US012412044B2

az United States Patent

Kanchibhotla et al.

US 12,412,044 B2
Sep. 9, 2025

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

4y
(22)

(65)

(60)

(51)

(52)

METHODS FOR REINFORCEMENT
DOCUMENT TRANSFORMER FOR
MULTIMODAL CONVERSATIONS AND
DEVICES THEREOF

Applicant: Openstream Inc., Somerset, NJ (US)

Inventors: Chaitanya Kanchibhotla, Telangana
(IN); Pruthvi Raj Venkatesh,
Karnataka (IN); Rishu Kumar,
Jharkhand (IN); Radha Krishna
Pisipati, Telangana (IN); Rajasekhar
Tumuluri, Bridgewater, NJ (US)

Assignee: Openstream Inc., Bridgewater, NJ
Us)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 506 days.

Appl. No.: 17/829,731
Filed: Jun. 1, 2022

Prior Publication Data

US 2022/0405484 Al Dec. 22, 2022

Related U.S. Application Data

Provisional application No. 63/212,743, filed on Jun.
21, 2021.

Int. CL.

GO6F 40/40 (2020.01)

GO6F 40205 (2020.01)

GO6F 40/35 (2020.01)

GO6N 5/04 (2023.01)

U.S. CL

CPC GO6F 40/35 (2020.01); GO6F 40205

(2020.01); GOGF 40/40 (2020.01); GO6N 5/04
(2013.01)

A2

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

11,128,579 B2 9/2021 Magliozzi et al.

2016/0085853 Al* 3/2016 Zelevinsky GO6F 16/338
707/765

2016/0188747 Al* 6/2016 Cypherccc.c.. GO6F 16/84
707/756

2018/0329884 Al 11/2018 Xiong et al.

2020/0019642 Al 1/2020 Dua et al.

2021/0342399 Al1* 11/2021 SiStocccovivnene GO6F 16/90332

* cited by examiner

Primary Examiner — Nafiz E Hoque
(74) Attorney, Agent, or Firm — Young Basile Hanlon &
MacFarlane, P.C.

(57) ABSTRACT

A computer-implemented method and system for enrich-
ment of responses in a multimodal conversation environ-
ment are disclosed. A Question Answer (QA) engine, such as
a reinforcement document transformer exploits a document
template structure or layout, adapts the information extrac-
tion using a domain ontology, stores the enriched contents in
a hierarchical form, and learns context and query patterns
based on the intent and utterances of one or more queries.
The region of enriched content for preparing a response to
a given query is expanded or collapsed by navigating
upwards or downwards in the hierarchy. The QA engine
returns the most relevant answer with the proper context for
one or more questions. The responses are provided to the
user in one or more modalities.

20 Claims, 18 Drawing Sheets

306

304 306

QUERY

- 308 ANALYZER

DOCUMENY
ROTRIEVAL
SYSTEM

ANSWER
EXTRACTOR,

310 312

{ DETERMINE QUERY

| striaBILTY

DETERMINE
STRUCTURE ANIDY
CONTEXT

SEARCH DOCUMENT

REPOSITORY

RETRIEVE RELEVANT |
DOCUMENTS

ORDER DOCUMENTS {326
BY RELIVANCE

IDENTIFY PROBABLE.
ANSWERS

330,

EXTRACT ANSWERS

US 12,412,044 B2

Sheet 1 of 18

Sep. 9, 2025

U.S. Patent

o

!

_

!

_ SHOIAGA A TIHOW 4IAAOAd

_ s A0IA¥ES dNOTD Tl

I A

| v v

_ ’ AAATIAOUd

| 01 1 LANHELLNT "\ _ADIANAS LANMAINI | og
A

" y

_ YHAYES —» MHOMLAN TYDIOT == o oo o e

1921 1L !

_ |

_ 901 -~ AUV MLIOS < w

!

| |

| |

I . oz i

R (S)IOIAGA IDVYOLS | |

_ F—— """ - {

_ | Pl

_ P17 - YATIOUINOD 11d1N0 |01 - AMOWAN P

[I b

| | b

[it - JETIOLINOD LNdNI Fozol — 1 (QY90SSHDHOUd Iy

_ ~ Lo

_ - | P

_ 911 | YHTIOULNOD NOLLVIINIWINOD | LN ONISSHOOUd TVRINAD - |

_ ry b e e e e e e e e - m

I e o e et e e ot e e ot e ot o o e e e e ot e -

_

| PR SUUUURSUUURS UGS PUUUGH PUUS FUUUS IUUIS UG UG UUIUUDG IUUS VDT I NOURS UUURS SO UUUGS UUUN U UUI UUUU UUU VUL U UUUGPUTINS FUULS UGS NUUUS U UUU UUUN UG UUN U0 IUOUS SOUOS UUTUS UUUAPUUUN U0 S U DUUIS OIS U UUOR N

US 12,412,044 B2

Sheet 2 of 18

Sep. 9, 2025

U.S. Patent

s s S e M e SAe A T AR VN AR A e A AR AR R W AR W e A e A AR WA AR WA AR W e AR e e AR T AR WA AR W AR A e e A T AR WA AR A e S AR WA A W AR W e AR e e e S e ey

LNd1N0 « JOSSHOOUd

~VSIT

1 YOSNHS

\

[SUURPUUR U UURSUUS U UG UUR SIS UUR SUUS SUUR SO UG SUUS U UUS UL UG UUR SUUS U SUUS USRS UG ST SOUI U U UUS UUR VUSROS UUR DS UG ST U SR SUUS U UUSUUR SO UUR VUSRS SUUS UV SO UUG SIS SUU U U SO0 U VUSROS UUR SIS U ST U S

U.S. Patent Sep. 9, 2025 Sheet 3 of 18 US 12,412,044 B2
300
I /
302 304 306
- QUERY ggg&g&ﬁ ANSWER
3 ANALYZER SYSTEM EXTRACTOR
310 e 312
DETERMINE QUERY |_
SUITABILITY
' 314
DETERMINE
STRUCTURE AND
CONTEXT
| ~ 316
CLASSIFY QUERY
| ~ 318
REPHRASE QUERY
~1320_
> 322
SEARCH DOCUMENT
REPOSITORY
' —,- 324
RETRIEVE RELEVANT
DOCUMENTS
]
ORDER DOCUMENTS |~ 326
BY RELEVANCE
» { e 328
IDENTIFY PROBABLE
ANSWERS
l
330
~{ EXTRACT ANSWERS
J 332

U.S. Patent

Sep. 9, 2025 Sheet 4 of 18 US 12,412,044 B2
‘ 410
DOCUMENT. . 499 400 |)
REPOSITORY ™ - CONVERSATION
v oo 41 l - 411
5o (}ngﬂfyww MULTIMODAL |
UMEN QUERY INPUT
A 2 P 422 _____ _["’_ _4:2;7 —— ‘ a 412
IDENTIFY | DOCUMENT | PARSE
DOCUMENT CLASS |¢ | CLASSIFIER | MULTIMODAL
o o ____-___ QUERY
\ | MULTIMODAL |
PARSE DOCUMENT | PARSER {416
STRUCTURE AND T T - v - 413
CONTENT I MULTIMODAL | 417} IDENTIFY ENTITIES
ENTITY > IN MULTIMODAL
v 44 | RECOGNIZER (MER) | QUERY
EXTRACT META | = ===
7 42
CONTENT AND <——-—-—: OIBS{%A(;?Y : 8
LAYOUT DATA —— v - 4l4
v - 425 [SEMANTIC 418 IDENTIFY
DETERMINE TREE : DEPENDENCY | DEPENDENCIES
STRUCTURE { __ PARSER | AMONG ENTITIES
R e L
| MODEL TRAINING |
429
Lot ol sl il oo dioeo Moot uali ool oo ol olibeaalioce B oot ool oe it oo bl d }
———— e —»i REINFORCEMENT DOCUMENT TRANSFORMER |
_______ e
v 426 " v . 415
FLATTEN TREE| | CREATE/SAVE PREPARE QUERY DETERMINE
STRUCTURE "I EMBEDDINGS AND CONTEXT |¢| QUERY INTENT
4307] EMBEDDINGS AND CONTEXT
| 431
k4 A 4 + v
COMPUTE SIMILARITY AND - 432 | DETERMINE TOP-K RANKED 36
RETRIEVE RELEVANT RESPONSES RESPONSES -
v v
IDENTIFY KEY TERMS AND ORDER | 433 PREPARE RELEVANT - 437
ANSWER
y y 438
DETERMINE EXTENTS IN HIERARCHY {-434 PROVIDE RESPONSES
v T
ASSIGN WEIGHTS, CALCULATE | 435 z
WEIGHTED SCORE, AND RE-RANK i

FI1G. 4A

US 12,412,044 B2

Sheet 5 of 18

Sep. 9, 2025

U.S. Patent

-
e 3
g

g
g

sy
oy

oy
S,

Ussppy T T eSS

Ovb

dy ‘OId

g

5501

Rl

Raed

=y

vy

At

S50

o

e
et

¥ g

§ ey

¢ ustag

T wiiag

US 12,412,044 B2

Sheet 6 of 18

Sep. 9, 2025

U.S. Patent

Sty

US 12,412,044 B2

Sheet 7 of 18

Sep. 9, 2025

U.S. Patent

SRERLEAY

%

HPEET PN R

aaddeg apduexy XINASO

mh..‘:. i

m SE Mﬂw mwm 23 um

wr m” B ﬁ%& ,ym ,.w W,w%

23 w.www ;
0 FERi
a5y B
3w

Waw 3 m

Ao ?
Mwwnu,...f,w k

%

o

US 12,412,044 B2

Sheet 8 of 18

Sep. 9, 2025

U.S. Patent

H4¥ 'DIA

BLTRiBBT 8-

GOETESOT G- 9SBESEIS O~

b

KA LT

*

£

TOPTTI09 0~

[cewvose a-

CLGEUPE T LRUIBSST 6~ [E66L7T80]

L2z989v21 0~

£LOTOYT G- 18985570 11 Huippsguy

Saded ardumus WTUREN UT IUBMLSGER ST aBun ,ﬁmmm

U.S. Patent Sep. 9, 2025 Sheet 9 of 18 US 12,412,044 B2

oy

460
i

FIG. 4F

US 12,412,044 B2

Sheet 10 of 18

Sep. 9, 2025

U.S. Patent

905

pOg

VAMSNY | IXHAL
9ps—1 IYOHS | 1 dAdINLI™
PPS <
Y
| LXHINOD IXAL
ANV Tlodgagniay | 985 gAangLay J ¥,
— ,| SNUALLVA
8¢S ovs I 4 IA0
g JAAAO ws
< mh%mme 4 ANV SIWNAL e
- _ AN KALLNEd
- yy 5 ; —-97S $TS
- 4 - N A / \\ y
—4-) ALIVIINIS SONIGAddNd NOLLVOLILINAQI | | SOd ANV DNISYVd

A y Y

moz_smemmzm I —
: _ ~ SNA¥0D |, - TIS
mD“nEOU JH0LS - v | Yy v ‘ / v 4
ws 4 o NOS{
SONIAQagnd . — ANV HA1IONALS TINIOISNVIL
SNAYOD ALVIUD NOSI VLEN || d434.L LOVHL1XH < :

- HLVTID 8IS -
0TS - :

agama pis - SNOLLVYHAdO TH4L

. \\ \\\ .\\\\A
01s 80€ - /
00

US 12,412,044 B2

Sheet 11 of 18

Sep. 9, 2025

U.S. Patent

d¢ DId

UG- SERIBADD S JBDUN LIRS Y P
O LOMNE, PRIBADD BUL U ISDIBIL N D
LIS, DBISADS Bl 'Y
A0 SDRIBAOS BRI R

Hupusouos ou) pueel B sjussaudaisiu

| 10 SpEsU0s AffRuoRUSI Sy AUR 1B | DRINSUL, SO0 AUR JO NOA Jf DIOA 0SB $1)} W0
abrioansy Si4) O SRIBIBI } S8 s AUE I8 NOA AQ DNEI O 9880 AUR Uf DIOA BT U0 8DBIBAOD S

pnely 10 ‘uoneuasaideIsipy JUsWRBUOY L
w0y abemaod sy sepun suonebiao

Aue o SN BARERI JOU jIM BIEISA SDAMNSUL, BUL IO DRINSUL, B JO Asuaaosy Jo Amdnjueg

Anydnnjueg "L
SUOIHPUOD [BIBUBD ']

U.S. Patent Sep. 9, 2025 Sheet 12 of 18 US 12,412,044 B2

552

S

o
inrsabsodates nf Sox: lom A5 8m rasnan v slvlewMont
f«:%;zee::i{fsx'w*" aligry is&:;eime clonrebafli 0.0.44%8, General Conditionsefspans/dive
wedbe chassat ; Baoduter dh B8 dop 7 LT easpan k=3 sbylex"font
sizen10pxve *maé-m frvbaseling; ol ‘rgi;af{} Q0,10 1, Bankruptoy<fapansafdive
«div classeit” stvle="gositioreabaolute; lefnB4py; top A88px; sspan =R stvles"For
sizes M vertical-align baseling colonrghalS 8.0, 11 " »Bankrupicy or insolvenoy of the © mmre&"" OF
the</spansidive
agdiv classs™int™ stylex"positinncabsolute; lefU8dp; ton 387" raspan " 12Y avylex"font-

size: 10pvertizabalipn: basel Hnecolorrghall 00,11 s insured's” entate will not refleve ug of
anyefspanscfdive
wediv chass=Od® stvie"position:absolote; fBdpx ton 308 "rasnan e 2% shylesfont

sizen o aligrobaseline nolorreba{ld, 00,11 obligations under this Coverage

wdiv chassa"tyt® *"'t‘jiizfm** i

. iorrabsolute: lefn 8o topd 23 vaspan " A" sivlen"Tont-
sizs Hkmiverticabalignhassline;cnlorrgbal0 0.0, 1573, Concerlmmnt, Misrepresentation Or
Fraudefspanse/dive
gdiv slasa™iot” siylex"positinnabsohite; lefu8dpx; fond38n"raspan M 12Y advlax"font-
sizs: 10pverticalb-alipnbassling colorrghe{l 0,80,1) "= This Coverage Form s void in any case
ofefaparemafdhs
widiv chassa™xd® Jigim“ sositionabenlote BiUBSpx tomddBmy raspan e 127 syl ont

sizer iBpxvertival-aligrnbaseline;rolorrghall, 00,4}, " »Traud by vour &b mivy time a5 i relates In
thise/sparie/dive
wodiv classeiat” stvles"podtioreabsolute; tefn84py; top 480px; seaspan ="f2" styvle="Forg
size Yperverticabaligs &} avelingoolonrgbaiO B0, 11 »Uoverage Farmy 1 s also void vy or
vy spanvafdive

iy dlaser™ ot stvlewposilonabsolute it 84y topd¥in Mraspan e T shviewfont
stee pgvarticab-alipr baseline;colorrgba{0 00,11 s other Minsurad®, at any tims,
intentionallyefspansafdive

«div chmgas" et h,ﬁw ’m}v*t';w'abw ube; feft84pw topid82o "raspan i 2" shvies™ont

o ilpgenticad slipn baseline;coionighel 8.0 11 " reoncesals or misreprasents g material
f&ct«jwaaw,ﬁm«,

«div ean " styles"positioreabanhutes oM 8o topda3ps raspan T stylenMonte

FEH 1{3;9% varticabaliyg Lmeime coinn rgmgﬁ 8,0,15 " reoncerning s panngfdive

miw vlassa®t” aiyles"pusitionabsolute; it8dny ropB08n raspan 1IN adylexfont-

shzariGpnvertiveba § gwi:;aﬁeim aiorrgbal0, 80,41 e, <fspanvaspan B dvlexfont

stepi0poearticel-aligrobasaline;voloriegba{0 0,0,1), "> This Coverage Forny<fsnare</divs

v clagysixg® ﬁg.{;&x positionabonhite: loft84pg top 338 Mesparn a3 stvlen™ant.

sizend0pverticabalignobaselinerolorrgbed0,0,0,1) 7. </ spareaspun R stvles o

stz ADpoverticab aligrbaselineonionghai 0,0,15 " The voverad "auto” = fpar-<fdivee

<gdiv slassxt” sivies"positionabsolute; 00840y top 558 py; "raspan =YY abylenfong-

size e verticab-alignobaseling solorrgha{0,0,0, 41 Fre <fsparmraspan ida™27 styles™ont-

sizer Wpmgvertivabelign beselnenolorrgha{0,0,0, 11 " >Your Intersst in the covered "aulo™;

arafspanv<fdive

<ediv classeint” sbvlex"position abenhate: left 84k top 558 "raspan 1”137 sbvlen fong-

shrei0pxverticala “»**‘iaf:;%imf:& solororphafG 0015 " »d ofspaneaspan TR styles™ong

st iDpovartiveb aligrnbeseline;ondoreghe{0 000137 >A claim under this Toverege Form.<fspansafdive

FI1G. 5C

U.S. Patent Sep. 9, 2025 Sheet 13 of 18 US 12,412,044 B2

554

>

FIG. 5D

U.S. Patent

Sep. 9, 2025 Sheet 14 of 18

ey

¢

L

US 12,412,044 B2

FIG. SE

US 12,412,044 B2

Sheet 15 of 18

Sep. 9, 2025

U.S. Patent

[SHOTITONGD Gify

g

SHOLLTNGD oihy
IMSTLINGY oy

4

mﬁ wﬂﬁ »

) ww*hwaw@uauﬁww *w%.

g % wﬁ%&mg 83

US 12,412,044 B2

Sheet 16 of 18

Sep. 9, 2025

U.S. Patent

Q950566 "0
SH9CEERTY
S1IviIs ¢

c19%PLLL G-

BRLEBLETQ
LOB0BEY O

LESLSYRLT8-
SOrIsit e

LHOORLLE B

9TOBE66L 0"

GIVLEEE S
SR A A b
AR T NA DS o
LLLBBLOO B~
59l g
SLOEBIPL G-

PECLVL O
PoPEB8L T

/EURIBOLT A

LLEVESY”
Sfibhet”
LE2T998T
IHTRORSTT
BRTEGRPD”
JOUELHLL
LPUBBIGETY
BPITRS98° 8-
BETHIET B~
£RAPe1Ig 8-

I
G-
@~
150
15
RS

LESBTEY 0"

IPI89Z80° 0
$Y09898Y " 9
STTIEETT O

811450176~

168066887 ¢
gLIQRIL G-
SOBLQLTR

D¢ DIA

TopPoee 0 {80kl Te-
SQtbtiv’ e L4BL9rL e
LBLBGRLETE- BEBROEI O
BELHLTSR T VedlitiT 8-
CROBETL TH- SE19R0BL 8-
SIBTLRIT 8- LBLTLSEETD
eHEPIIRS "0 £RLPOTEL O~
CRBEPLLNTE I9II857 0
LRSLBTITTE BLSHPREL G-
IER9C Y 1896681178
BIPRLLR G LSBRLELETE-
[E2TATTATE IR R WA M
599006570 LL%BLUBLTE-
BEHUSSEYTE LiBPRFLEETE-
LUAYP1L987 8- Bhobbeki o
LORLLTOL T8 PROLILEL 8-
GEOPIOLTE BRPORGLLR
SEPPRSPLTE eL9bEnlT o
TELSH6L78- SRPELRLTE

09¢

SLe98yll 8-
gitivii’e
PIIOSIV O~
QLS990
CEOSEPRT O
TBCCORIO O~
PROVPLLGE O

ESTLLEE -
SISBTLED O

BEPSTHSE" @
GREETBS 0
SEBLLYS O

$R869° -

$TI6ZLPT 0

CTLYSBOE -

COVISTLT O
ZEETYES O~

CRESBPEL' O

Z8B6660Y 0

GLBIQ667 0
PIOTYOS 0~
CEITTRYE’ 0
ZRSSPIS O
PIRUTSES 0
RYSSTOLE O
LSLYEYS 0~
SETYITEL 0~
8EBTLI6°9
9RISIVL "B
LTIVED9L " B+
947972 8-

Frevisbl o~

TZ65562°0

195084770~
LE9TLREY Q-
PROTHEST 0~
GZTIRYE O~
AEPPESTR 0]

US 12,412,044 B2

Sheet 17 of 18

, 2025

.9

Sep

U.S. Patent

oy

i 4

G wiinesl

US 12,412,044 B2

Sheet 18 of 18

Sep. 9, 2025

U.S. Patent

S DId

04 seRiAY ST @

0 5 ARTIAS JOU TTTH S1BI53 8 DRANSUT, A J0 DRURSUT, 241 40 Awmniosul o Andnmieg wiAndnaveg
.\.\\A
995

IS 'DI4

SR WIRTy ¢ [pteay Jo wre

m 43 JBpun SueTERIINe ﬁ 10 $n &ﬁ& w 4 Mmm BIPISH S PRSAsYY L 40 Aasarosur 40 A @% Mﬁ
Psuotitpues TeastsRl [suoriipuny e smy] ﬁ xmmmz w. SHOTITpUOY TeBusd

US 12,412,044 B2

1
METHODS FOR REINFORCEMENT
DOCUMENT TRANSFORMER FOR
MULTIMODAL CONVERSATIONS AND
DEVICES THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Application Patent Ser. No. 63/212,743, filed
Jun. 21, 2021, the entire disclosure of which is hereby
incorporated by reference.

TECHNICAL FIELD

This disclosure relates to human-computer interactions,
and more particularly a system and method for providing
enriched responses in a multimodal conversation environ-
ment on a document corpus, identifying the query patterns,
and responding to the queries in one or more modalities.

SUMMARY

Disclosed herein are implementations of reinforcement
document transformers for multimodal conversations. In an
aspect, a method may include receiving a multimodal query
input via one or more sensors of a computing device. The
multimodal query may be associated with a conversation.
The method may include parsing the multimodal query to
obtain parsed content. The method may include extracting
one or more multimodal entities from the parsed content.
The method may include translating one or more multimodal
representations associated with the one or more multimodal
entities. The method may include generating joint represen-
tations of the one or more multimodal entities. The method
may include identifying at least one semantic relationship
between the one or more multimodal entities. The method
may include determining a query intent and context of the
conversation. The method may include outputting one or
more responses to the multimodal query.

In an aspect, a method may include receiving a document
repository of an organizational domain. The document
repository may include documents. The method may include
identifying a document type of each document in the docu-
ment repository. The method may include extracting a
domain-specific n-gram for each document. The method
may include comparing each document with key terms of
training data. The method may include assigning weights to
the domain-specific n-grams. The method may include
assigning each document to a document class. The method
may include parsing a document structure and content of
each document. The method may include extracting meta
content from each document using a domain ontology. The
method may include identifying structure characteristics to
obtain a tree structure that represents contents of respective
documents in a hierarchical structure. The method may
include padding the contents in one or more parent positions
of the tree structure to obtain a flattened tree structure. The
method may include outputting the flattened tree structure.

In an aspect, a system may include a memory and a
processor. The processor may include a reinforcement docu-
ment transformer. The processor may be configured to create
one or more corpus embeddings for one or more sentences
in a corpus. The processor may be configured to store the
one or more corpus embeddings in the memory. The pro-
cessor may be configured to perform a semantic comparison
of query embeddings and the one or more corpus embed-

10

15

20

25

30

35

40

45

50

55

60

65

2

dings. The processor may be configured to determine a
closest corpus embedding by identifying relevant documents
from the corpus for one or more query inputs. The processor
may be configured to retrieve a response based on the closest
corpus embedding using a transformer model.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is best understood from the following
detailed description when read in conjunction with the
accompanying drawings. It is emphasized that, according to
common practice, the various features of the drawings are
not to-scale. On the contrary, the dimensions of the various
features are arbitrarily expanded or reduced for clarity.

FIG. 1 is a block diagram of an example of a system in
accordance with embodiments of this disclosure.

FIG. 2 is a block diagram of an example of a system
framework for implementing the embodiments disclosed
herein.

FIG. 3 is a block diagram of an example of a typical
question and answer system.

FIG. 4A is a flow diagram of an example of a multimodal
conversation system using a Reinforcement Document
Transformer (RDT) in accordance with embodiments dis-
closed herein.

FIG. 4B is an example of a format for term weights.

FIG. 4C is a diagram of an example of a parent-child
relation in a page of a document.

FIG. 4D is a diagram of another example of a parent-child
relation in a page of a document.

FIGS. 4E and 4F show an example of a query and its
corresponding embedding generated by the RDT in the
vector space.

FIG. 5A is a block diagram of an example of a tree
bidirectional encoder representations from transformers
(TreeBERT) architecture for training the RDT.

FIG. 5B is an illustration of a portion of an sample
document.

FIG. 5C is an example of an equivalent portion of text
from the hypertext markup language (HTML) file that is
generated from the portion of the sample document shown
in FIG. 5B.

FIG. 5D is an illustration of an example of the equivalent
Meta javascript object notation (JSON) file for a portion of
the selected paragraphs.

FIG. 5E is an illustration of an example of the equivalent
tree structure for the selected paragraphs.

FIG. 5F is an illustration of an example of the flattened
tree structure for the selected paragraphs.

FIG. 5G is an illustration of an example of the equivalent
embeddings in vector space for the selected paragraphs
using the sentence transformers.

FIG. 5H is an illustration of an example of the equivalent
query embeddings in vector space using the sentence trans-
formers and the similarity score for the statements.

FIG. 51 is an illustration of an example of the output of the
cross encoding.

FIG. 5] is an illustration of an example of the output of a
relevant paragraph retrieval from the tree structure.

DETAILED DESCRIPTION

With the increase in large-scale data storage and ease of
using the internet, massive data is stored in various data
sources such as on-premise or cloud environments, and is
made available to the public. Searching and exploring such
a vast volume of data makes information retrieval a time-

US 12,412,044 B2

3

consuming and difficult process. This problem has prompted
the development of modern, more adaptable research meth-
ods, such as Question Answering Systems (QA system). In
reality, QA systems allow the user to ask questions in natural
language (NL) and return the correct answer to the questions
rather than a collection of documents deemed appropriate.
The three important components in any QA system are
Question Analysis, Document Retrieval, and Answer
Extraction.

In recent years, QA systems have gained popularity in
domains such as insurance, healthcare, and other domains.
Organizations pertaining to these domains possess a large
document corpus where each document ranges from a few
pages to a few thousand pages. QA systems need to identify
the appropriate region of content that can identify and
extract relevant responses for one or more queries. Building
a question answering system in these domains is challenging
for various reasons including (a) documents are varied
formats such as a portable document format (PDF), images,
or other formats, and comprise structured, semi-structured,
and unstructured content, (b) documents are from multiple
classes, (c) documents are prepared with a plurality of
templates (structure/layout) where each template comprises
key-value pairs, tables and free form text, (d) documents
may have titles and subtitles, sections and sub-sections with
section and sub-section headings, paragraphs and subpara-
graphs, domain-specific key terms and key phrases, and the
like. Further, correlating text present in multiple paragraphs
is needed while presenting the answer to the user, and
identifying the relevant answer is more challenging if the
region of the response for the query contains both paragraph
(sub-)heading and some of the paragraph text content.
Moreover, the relevant context can be present in multiple
text spans (also referred to as extents) in the document.

FIG. 1 is a block diagram of a computing device 100 to
which the present disclosure may be applied according to an
embodiment of the present disclosure. The system includes
at least one processor 102, designed to process instructions,
for example, computer-readable instructions (i.e., code)
stored on a storage device 104. By processing instructions,
processing device 102 may perform the steps and functions
disclosed herein. Storage device 104 may be any type of
storage device, for example, but not limited to an optical
storage device, a magnetic storage device, a solid-state
storage device, and a non-transitory storage device. The
storage device 104 may contain software 106 which is a set
of instructions (i.e. code). Alternatively, instructions may be
stored in one or more remote storage devices, for example,
storage devices accessed over a network or the internet 108.
The computing device also includes an operating system and
microinstruction code. The various processes and functions
described herein may either be part of the microinstruction
code or part of the program (or combination thereof) which
is executed via the operating system. Computing device 100
additionally may have memory 108, an input controller 112,
and an output controller 114, and the communication con-
troller 116. A bus (not shown) may operatively a couple of
components of computing device 100, including processor
102, memory 110, storage device 104, input controller 112,
output controller 114, and any other devices (e.g., network
controllers, sound controllers, etc.). Output controller 114
may be operatively coupled (e.g., via a wired or wireless
connection) to a display device (e.g., a monitor, television,
mobile device screen, touch-display, etc.) in such a fashion
that output controller 114 can transform the display on a
display device (e.g., in response to modules executed). The
input controller 112 may be operatively coupled (e.g., via a

30

35

40

45

4

wired or wireless connection) to the input device (e.g.,
mouse, keyboard, touchpad, scanner, Scroll-ball, touch-
display, etc.) in such a fashion that input can be received
from a user. The communication controller 116 is coupled to
a bus (not shown) and provides a two-way coupling through
a network link to the internet 108 that is connected to a local
network 118 and operated by an internet service provider
(hereinafter referred to as ISP) 120 which provides data
communication services to the internet. The network link
typically provides data communication through one or more
networks to other data devices. For example, the network
link may provide a connection through local network 116 to
a host computer, to data equipment operated by an ISP 120.
A cloud service provider 122 and mobile devices 124
provides data storage and transfer services to other devices
through the internet 108. A server 126 may transmit a
requested code for an application through internet 108, ISP
120, local network 118, and communication controller 116.
Of course, FIG. 1 illustrates computing device 100 with all
components as separate devices for ease of identification
only. Each of the components may be separate devices (e.g.,
a personal computer connected by wires to a monitor and
mouse), may be integrated into a single device (e.g., a
mobile device with a touch-display, Such as a Smartphone
or a tablet), or any combination of devices (e.g., a computing
device operatively coupled to a touch-screen display device,
a plurality of computing devices attached to a single display
device and input device, etc.). Computing device 100 may
be one or more servers, for example, a farm of networked
servers, a clustered server environment, or a cloud network
of computing devices.

An embodiment describes a method of multimodality
attention discovery for effective Question and Answer via a
conversational virtual assistant tool. A user provides a set of
inputs. These inputs may be provided by the user through a
multimodal interface-based computer-implemented tool.
These inputs are, but not limited to, images, speech, audio,
text, facial expressions, body language, touch, scanned
object, and video.

FIG. 2 is a block diagram of an example of a system 200
in accordance with embodiments of this disclosure. In this
example, a computing device 205 may include a processor
220. The processor 220 may be a multi-modal processing
component. In some embodiments, the processor 220 may
be implemented with a soft-agent. The soft-agent may be a
software component that is configured to allow users to
provide inputs via a multi-modality interface. Computing
device 205 may be configured to receive a multi-modality
input 210, for example via a multi-modal interface. The
multi-modality input 210 may be obtained by one or more
sensors 215A-215C. Any number of sensors may be imple-
mented, and three sensors are shown in FIG. 2 for simplicity
and clarity. The one or more sensors 215A-215C may be any
type of sensor including, for example, an interactive touch
display, a microphone, a global positioning system (GPS)
sensor; an accelerometer, or a biometric sensor. In an
example, sensor 215A may be a microphone, sensor 215B
may be an interactive touch display, and sensor 215C may
be an accelerometer.

The multi-modality input 210 may comprise free-form
text input in the form of a question or a statement. Alterna-
tively, or in addition to, the multi-modality input 210 may
comprises audio input such as speech or voice input, some
other form of multi-modality input such as an image, video,
touch, scanned object, gesture, or any combination thereof.
In an example, the computing device 205 may be configured
to processes the multi-modality input 210 using the proces-

US 12,412,044 B2

5

sor 220 by a soft-agent to produces an output 230. Output
230 may include, for example, a search query that can be
sent to a web data store stored on one or more other
computing devices (not shown) for processing. Alterna-
tively, processing of search queries may be performed by the
processor 220 of the computing device 205. As another
example, the output 230 may include a display of ordered
search results obtained in response to a search query. The
output 230 may include a multi-modality output that
includes a display for an interactive dashboard, a text-to-
speech audio output, an audible or haptic alert or notifica-
tion, or any combination thereof.

When a user is registered with the system 200, the
application and data stores that are allowed by the user are
configured for accessing and retrieving information from
those applications and data stores. The system 200 may be
configured to provide different user-access permission
depending the user role and entitlements. Access to specific
application and specific data stores is given to a user based
on the user roles. When a new user is registered, the
administrator may configure the access permission as per the
user role, which enables the user to access the applications
and data stores that are allowed for that specific role. Once
the administrator approves the permissions, the user may
access and retrieve the information from the allowed appli-
cations and data sources. One or more roles may be assigned
to a user.

FIG. 3 is a block diagram of an example of a typical QA
system 300. The QA system 300 includes a query analyzer
302, a document retrieval system 304, and an answer
extractor 306. In this example, a user 308 posts a question
310 (i.e., query) to the QA system 300. The query analyzer
302 determines 312 the suitability of the query to the QA
system 300. If the question 310 is appropriate to the QA
system 300, the query analyzer 302 determines 314 the
structure and context of the query using a combination of
natural language processing (NLP) techniques such as
n-gram analysis, parts-of-speech tagging, noun-phrase
extraction, or any combination thereof. The context of the
query may be a combination of intra-query context and
inter-query context. For example, for a given query, the
query analyzer 302 may identify the keywords and key
phrases in the query that provide the intent of the query.
These intent-specific keywords and key phrases, along with
their associated neighborhoods (i.e., words before and after
these keywords and key phrases) form the intra-query con-
text. The inter-query context may be determined based on
the coherence and intent among the sequence of previous
queries in the conversation. The query analyzer 302 is
configured to classify 316 the query. Classitying the query
may include identifying the question type, for example,
using a classifier. In some examples, the question may be
rephrased 318 to best fit with the QA system 300.

The query analyzer 302 is configured to transmit the
processed question 320 to the document retrieval system
304. The document retrieval system 304 is configured to
search 322 a document repository and retrieve 324 the
relevant documents from the document repository using
techniques like TF-IDF similarity, Jaccard index, Word
embeddings, Deep Learning text similarity algorithms, and
the like. The relevant documents may be retrieved based on
the determined structure of the query, the determined context
of the query, the classification of the query, or any combi-
nation thereof. The relevant documents are assumed to
contain a relevant response. The relevant documents are
ordered 326 based on the system score that may be calcu-
lated based on the semantic similarity between the docu-

10

15

20

25

30

35

40

45

50

55

60

65

6

ments present in the knowledge base and the user query, and
are sent to the answer extractor 306. Distance measures,
such as cosine similarity, Euclidian distance, Manhattan
distance, Jaccard similarity, and Minkowski distance may be
used to determine semantic similarity. The answer extractor
306 is configured to identify 328 the probable answers using
a collection of methodologies such as re-ranking using
n-grams, custom rules and inferences that are framed using
a knowledge base, and rearranging the answers based on a
span of features. Finally, the relevant answer is extracted 330
from the probable answers. The relevant answer 332 may be
validated for correctness and transmitted to the user. In
general, all the questions can be classified into the following
categories.

The first category may include questions that expect only
one among the two answers, i.e., either “Yes” or “No.” They
are usually treated as General or most common questions.
These are usually used in QA systems when there is a
predefined workflow in scenarios like decision support sys-
tems.

The second category may include questions that start with
terms such as: who, what, where, when, why, how, and how
many. These kinds of questions usually expect one-word
answers like counts, names of objects, the meaning of the
words, and the like. These were used in traditional QA
systems in which the answers are marked as having human
involvement.

The third category may include questions that have mul-
tiple options in the question themselves. These are usually
multiple-choice questions. The QA systems built on these
kinds of questions have limited capability, such as generat-
ing a conclusive answer based on inputs.

The fourth category may include factoid questions in
which the answer is contained inside a text. The response to
these kinds of questions can be a single word or multiple
words or sentences. The answer to this kind of question is
present in text block having one or more sentences. Some
examples for this type of question are “Who is the current
president of the United States?,” “List all the participating
nations in the cricket world cup,” and “List all the conditions
in this agreement.” To answer these types of questions
manually, users need to spend some time on the relevant
paragraphs to find the relevant answer. QA systems that deal
with natural language utterances should be able to support
these questions.

Typically, the data in the real world is present in multiple
formats such as structured data, unstructured data, or semi-
structured data. Structured data may be the type of data that
is present in in tables, database systems, such as relational
database management systems (RDBMS), knowledge
graphs, semantic web, and the like. Semi-structured data
may be the type of data that is present in lists or extensible
markup language (XML) files having a limited relationship
between entities, semi-structured web documents, and so on.
Unstructured data may be the type of data in which the data
is present as plain text such as policy documents, frequently
asked questions, articles on the web, documentation for the
users in product manuals, customer use cases, or customer
reviews, formed using natural language rules. Moreover, for
unstructured data, the structure of data has a significant
impact on the system’s accuracy.

Usually, indentation is maintained while preparing the
documents using a plurality of templates to visually recog-
nize the sections or subsections.

A knowledge base is a variety of databases for knowledge
management. It contains information about the large number
of'triples formed with the subject, object, and relation. These

US 12,412,044 B2

7

triples are also known as facts. These knowledge sources are
useful due to their improved accuracy over other knowledge
sources.

Open-domain QA systems are configured to process ques-
tions about any topics or questions belonging to a large
number of domains. QA systems belonging to this category
are difficult to build as the system is expected to form
generic queries and should be easily scalable to handle any
new additional domain. These systems deal with large data
sources such as Wikipedia, data from web pages, and other
large data sources. In these systems, the user is expected to
ask any type of question. These systems depend on general
ontologies and real-world knowledge. DrQA, which is
developed by the Facebook research team is one such
system that is trained on Wikipedia articles.

A Closed-domain QA system is configured to process
questions for a specific domain (for example medical, edu-
cation, insurance, etc.). These systems depend on domain-
specific ontologies. In this type of system, the users are
expected to ask limited types of questions. In terms of
stability, this category of systems tends to be more stable
than the open domain systems. Natural Language Processing
(NLP), Natural Language Understanding (NLU) systems are
used in this category. QA systems such as Alexa and Google
home are some of the day-to-day examples belonging to this
category.

Question answering (QA) is one of the widely researched
areas in NLP. QA is widely used in applications such as
chatbots and dialogue systems to aid human conversations.
Some of the state-of-the-art QA systems—for example, IBM
Watson uses standard NLP techniques such as dependency
parsing, parts of speech tagging, coreference resolution, and
the like. With the advancements of deep learning in recent
times, models like neural networks showed promising
results. These kinds of models require a huge amount of
training data as they have a linearly increasing learning
curve. One such example, belonging to this area is the
Recurrent neural networks (RNNs) which can handle QA
longer texts by using gated recurrent unit (GRU) and long
short term memory (LSTM) units. Other notable deep learn-
ing models for building QA systems are the Sequence-to-
sequence models. Deep learning models are used for QA
systems as they can automatically learn complex represen-
tations from the question. They can also support automatic
learning and knowledge exchange at the intermediate levels.
Deep learning models have already shown their performance
in open-domain QA systems for NLP activities such as
reading comprehension, neural network information
retrieval for achieving state-of-the-art performance. On the
other hand, transformer models have completely dominated
and achieved state-of-the-art models in NLP. They contain a
series of transformer blocks arranged in layers. The state-
of-the-art transformer-based pre-trained language models
include bidirectional encoder representations from trans-
former (BERT), generative pre-trained transformer (GPT)
model, robustly optimized BERT (RoBERTa), an extension
of an extra-long transformer (XI.Net) model that is pre-
trained using an autoregressive method, efficiently learning
an encoder that classifies token replacements accurately
(ELECTRA), and text-to-text transfer transformer (T5).
These models are used in downstream NLP tasks by fine-
tuning on a specific dataset.

Typical QA systems may suffer from a variety of draw-
backs. A first drawback may be that techniques such as term
frequency—inverse document frequency (TF-IDF) similar-
ity, Jaccard index, Word embeddings, Deep Learning text
similarity algorithms that are used for relevant document

10

15

20

25

30

35

40

45

50

55

60

65

8

retrieval, have their advantages and disadvantages in terms
of memory, time taken for execution, identifying a correct
strategy for finding similarity index, and the like. Moreover,
their suitability for large data is still challenging.

A second drawback may be that most of the current QA
engines perform only the relevant “document retrieval”
functionality that closely matches the query. They do not
return the exact answers and some post-processing is needed
to identify the correct answer. Hence, there is a need to tune
the QA system to retrieve the appropriate answers to user
queries rather than returning a complete passage or best
matching passages from documents, as most QA systems
typically do.

A third drawback may be that it is challenging and
essential for a QA system to handle or satisfy the queries
related to all the knowledge sources and return a natural
language response to a user query.

A fourth drawback may be that open-domain QA systems
are very difficult to build as they depend on generic ontolo-
gies and real-world knowledge. The training time for these
types of systems is very high due to the amount of data that
is required to train the system. Moreover, the systems are
expected to be easily scalable to handle any new additional
domain.

A fifth drawback may be that in closed domain systems
such as healthcare or insurance, most of the data is present
in electronic formats such as portable document format
(PDF) having both structured (mainly in the form of tables)
and unstructured content (mainly in the form of text blocks).
Following are some of the challenges for these types of
documents. Data in these documents can be voluminous. If
the answer to the user query spans across multiple passages
and pages in the document, correlating relevant answer text
spans from multiple places is challenging, mainly while
presenting the answer to the user. The text/paragraph in the
documents can have a heading, side heading, etc. describing
the context of the text. It may be challenging for a QA
system to handle a question that relates both paragraph
heading and some of the paragraph text content. Identifying
the most suitable answer for the question is challenging as
the relevant context can be present in multiple text spans in
the document. Identitying the most relevant text span for
retrieving the most suitable answer relating to a question can
be challenging as the relevant context can be present in
multiple text spans in the document.

This disclosure proposes a Reinforcement Document
Transformer (RDT) based on a multimodal conversation
system that exploits the document template structure (or
layout), adapts the information extraction using a domain
ontology, store the enriched contents in a hierarchical form,
learn the context and query patterns and returns the most
relevant answer (a single or multiple text span or a short
answer) for one or more multimodal queries.

In the disclosed embodiments, an RDT is configured to
generate automatic responses in a conversation that com-
prises one or more multimodality content. The RDT deter-
mines semantic relationships among the multimodal entities,
and generates query and context patterns. This disclosure
uses natural language processing, computer vision, speech
processing, and machine learning techniques to analyze the
multimodal query and prepare an appropriate response to the
user query.

While the embodiments are susceptible to various modi-
fications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and
will be described in detail below. It should be understood,
however that it is not intended to limit the disclosure to the

US 12,412,044 B2

9

particular forms disclosed, but on the contrary, the disclo-
sure is to cover all modifications, equivalents, and alterna-
tives falling within the spirit and the scope of the disclosure
as defined by the appended claims.

The input modalities in a conversation include facial
expressions, speech patterns, and text obtained via one or
more sensors. The issue with the analysis of one or many
modes of a query (Visual, Verbal, or Vocal) is that some
semantical and contextual information among the modes can
be misled. This necessitates an understanding of the cross-
modal dependencies and temporal context of the conversa-
tion to analyze the query.

FIG. 4A is a flow diagram of a multimodal conversation
system 400 using an RDT 429 for capturing one or more
multimodal queries by users and providing responses
according to an example embodiment. The entire approach
can be divided into two phases: (a) Ingesting documents
from a document repository 420 specific to an organization
and creating a knowledge repository by flattening a docu-
ment tree structure 426 and creating and/or saving embed-
dings 430, and (b) accepting a multimodal conversation 410
and providing responses 438. Documents may be read
sequentially from the documents repository 420 and ana-
lyzed for their content and structure. The document reposi-
tory 420 can be present either on-premises (such as local
drive, shared drives, file shares) or in a cloud repository
belonging to any available cloud computing platforms such
as Azure, Amazon Web Services (AWS), and Google Cloud
Platform (GCP). Documents can be read using the modules
leveraging the native drivers (e.g., APIs such as download
blob method for Azure cloud, getObject method for AWS,
and download_to_filename method for GCP).

The type of document (such as pdf, word, HTML, etc.) is
identified 421 for all the documents in the document reposi-
tory. The document type plays a key role in identifying and
extracting the document meta content since some document
formats such as PDF, Word, etc. support the document meta
content extraction. Document meta content is useful for
identifying the structure in the document.

The exemplary multimodal conversation system identifies
the document class 422 using a document classifier 427. The
document classes may be domain-specific, for instance, for
the insurance domain, the document classes may be Auto,
Global casualty, Gadget insurance, or any similar document
class associated with insurance. Similarly, for a banking
domain, the classes are Mortgage, Housing and Urban
Development (HUD), Truth-in-Lending (TIL), or any simi-
lar document class associated with banking. In an embodi-
ment, a domain-specific document classifier may be devel-
oped. The domain-specific document classifier may use
domain-oriented terms that play a pivotal role in classifying
the documents. One of the ways of identifying the domain-
specific terms may be by using the n-grams model. The
training document set may include sample documents for
each class. Initially, n-grams (uni-grams, bi-grams, tri-
grams) are extracted from each training document. The
n-grams may be divided into two groups, namely with-in-
domain and out-of-domain. The with-in-domain group may
contain all the domain n-grams, and the out-of-domain
group may contain the rest of the extracted n-grams. To
identify the with-in-domain group, domain-specific terms
provided by the domain expert or subject matter expert
(SME) are considered and n-grams are extracted for the
same. Term matching with extracted n-grams is performed
and the matched terms are considered as with-in-domain and
the rest of the extracted n-grams are considered as out-of-
domain terms. For the document classification, only with-

10

15

20

25

30

35

40

45

50

55

60

65

10

in-domain terms are considered. This is because (a) out-of-
domain n-grams may bias the result, (b) the overall solution
space is decreased for the next subsequent runs which can
bring down the memory requirement, overall execution
time, and (¢) for handling the terms that are more specific to
a certain class, term weights are assigned to each class. The
term weights are more for the classes to which they belong,
otherwise, it is treated as 1. FIG. 4B is an example of a
format 440 for term weights.

As shown in FIG. 4B, term, has more weight for class 2
when compared to other classes. Similarly, term, has more
weight for class 3. The total class weight is calculated for all
classes by adding the term weight for all the with-in-domain
n-grams. The total class weight is calculated using the below
formula.

CWey=V

within-domain terms

(EjZOPWeightP)

Here ‘P’ is the count of with-in-domain n-grams. CW, is
the class weight for class C1, Weight is the term weight that
is assigned to the class. The class weight vector for a
document is represented as,

[CW, CW,,CW,,CW,, ..

Here, CW| is the class weight for class 1, CW, is the class
weight for class 2 and similarly, CW,, is the class weight for
class n. These class weights are considered while classifying
a test document, and the test document is assigned to a class
that has the highest score.

Referring back to FIG. 4A, the document is parsed to
determine the document structure and content 423. The
document is parsed for extracting meta content such as font
size, font-weight, text color, text indentation (left margin,
top margin), The possible values for text characteristics are
fl—which stands for bold, f2—which stands for italics,
f3—which stands for regular text (which is without any of
the properties such as bold, underlined, italicized, etc.). The
content is extracted from the documents using libraries such
as Xpdf. Xpdfis an open-source utility that works mainly for
PDF documents for operations such as converting them into
plain text, HTML, or generate postscript files. The HTML
conversion feature is used to generate HIML and PNG files
for every page in the PDF document. The HTML file
consists of attributes such as font, font-weight, x and y
coordinates of the text, color of the text, text indentation (left
margin), etc. A PNG file may include the structures present
on the page, such as tables, horizontal lines (i.e., section
separators), page borders, and any other structure associated
with the page.

In this example, the meta content and layout structure data
is extracted 424 based on the identified document class and
the domain ontology 428. A domain ontology 428 holds
details about the structure of the data and the details about
each structured field extracted from the source document. An
ontology file is a JSON file that is created after reviewing the
information present within the source document. A domain
expert may create the ontology file. The ontology file aims
to facilitate three important activities in the structured data
load of the Question answering system: (i) automatic extrac-
tion of data from source documents, (ii) automatic loading
of extracted data into the persistent store, and (iii) creation
of dynamic query scripts for querying the datastore during
the question and answering session. A typical ontology file
may include one or more types of information such as
key-value pairs, table data information, and entity-relation-
ship information. The ontology file is also used for creating
the data extraction configuration file that holds the mapping

. CW]

US 12,412,044 B2

11

between the key-value pair attributes, table attributes, and
the information required to locate this data in the file.

The meta content is stored in a meta JSON file. For
example, a custom python script is used to create a JSON file
from the HTML file. The JSON file consists of only selected
metadata properties such as text, font size, font-weight,
indentation, page number, or the like. In the case of a PDF
document having two columns, the indentation value for text
present in the second column may be determined by sub-
tracting half of the page width value from the indentation
value determined by XPDF. The meta content may be used
to determine 425 the tree structure of the document. In this
example, a tree structure may be created from a Meta JSON
file by customizing the pytree.py python library. Text inden-
tation plays a pivotal role in determining the parent-child
relations in the tree. Parent-child relation in the tree is based
on the two properties: (a) text with less indentation value
from the meta JSON file becomes the root for the following
immediate text having more indentation value, and (b) text
with a bold font (section headings usually) is more likely to
be a parent in the tree for one or more paragraphs (children)
having the same indentation level.

Before forming the tree structure, all the unstructured text
is initially extracted, and parent-child relations are formed
using the rules described below. A text block can be con-
sidered as a heading if it satisfies any of the below condi-
tions.

The embodiments disclosed herein may take font charac-
teristics into account. For example, the paragraph headings
in some documents may be in bold font. This is can be
identified using the text characteristic value. The textual
block is considered as bold if its value is f1, that is, bold in
the meta JSON content.

The embodiments disclosed herein may take text charac-
teristics into account. Example text characteristics can
include whether the text block starts with an alphabet
followed with “.”, whether the length of the text block is less
than the length of its immediate text, whether the font size
of' the text block is greater than the font size of its immediate
text block, or any combination thereof. In an example, the
system may identify the text blocks as headings, such as “A.
Abstract”, “B. Introduction”, “C. Results”, and so on.

The embodiments disclosed herein may take text length
into account. The system may determine that the length of
the text is less than the length of its immediate text block.
Consider the sample text below:

Introduction

For the purposes of USENIX conference publications, the

authors, not the USENIX staff, are solely responsible
for the content and formatting of their paper. The
purpose of this template is to help those authors that
want to use HTML/CSS to write their papers.

The system may identify the text block “Introduction” as
a heading to its immediate text as its length is less than the
length of its immediate text. After identifying the text blocks
as headings, parent-child relations are determined. Indenta-
tion of the text may be used to form the parent-child
relations.

The embodiments disclosed herein may take text inden-
tation into account. Text indentation (which is the left-

10

15

20

25

30

35

40

45

50

55

12

margin value of a tag in the meta JSON file) is one of the
parameters used to identify the parent-child relationships.
The parent-child relationships are identified based on the
following conditions. If the difference between left margin
values of the text block and its immediate text block is less
than K points (where K is an integer and is greater than 0),
the text block may be considered as a parent to its immediate
text block, if the left margin value of the text is less than the
following immediate text block. If the difference between
left margin values of the text block and its immediate text
block is more than K points, the text block may be consid-
ered as a parent to its immediate text if the left margin value
of the text block is closer to half of the page width value,
otherwise, the left margin value of its immediate text block
is less than the left margin value of text block. This applies
to the cases where the heading is in the middle oriented in
single-column format.

FIG. 4C is a diagram of an example of a parent-child
relation in a page 445 of a document. As shown in FIG. 4C,
considering that the page 445 has a page width of 100 pixels,
half of the page width value is 50 pixels. The left margin of
the text block “PREFACE” is 40 pixels. The left margin of
its immediate text block (starting with “The following . . .)
is 20 pixels. As the left margin value of the text block
“PREFACE” (40 pixels) is closer to the half of page width
value (50 pixels) and its immediate text margin value (20
pixels) is less than the left margin value of the text block
“PREFACE”, the text block “PREFACE” is considered as
the parent of its immediate text block.

If the difference between left margin values of the text
block and its immediate text block is more than K points, the
text block is considered as a parent to its immediate text if
(a) the left margin value of the text block is closer to
one-fourth of the page width value, and (b) left margin value
of its immediate text block is less than the left margin value
of text block. This applies to the cases where the heading is
in the middle oriented in two-column format.

FIG. 4D is a diagram of another example of a parent-child
relation in a page 450 of a document. In this example, the
page 450 has a two-column format. As shown in FIG. 4D,
considering the page 450 has a page width of 100 pixels,
one-fourth of the page width value is 25 pixels. The left
margin of the text block “Abstract” has a value of 20 pixels.
The left margin of its immediate text block (starting with
“This is an example . . .) has a value of 5 pixels. As the left
margin value of “Abstract” (20 pixels) is closer to the
one-fourth of page width value (25 pixels) and its immediate
text margin value (5 pixels) is less than the left margin value
of the text block “Abstract”, the text block “Abstract” is
considered as the parent of its immediate text block.

The position of the actual text determines the highest level
of the tree. For a tree with ‘n’ levels, level ‘n’ corresponds
to the paragraph text in the document, level ‘n-1" corre-
sponds to its immediate heading, level ‘n-2’ corresponds to
the immediate heading of ‘n—1", and so on. Similarly, level
1 corresponds to the main heading of the document. Below
is the sample tree structure:

Root

|__ USENIX Example paper
|__ Abstract

|__ This is an example for a USENIX paper, in the form of an

HTML/CSS template. Being heavily self-referential, this template illustrates

US 12,412,044 B2

13

-continued

14

the features included in this template. It is expected that the prospective
authors using HTML/CSS would create a new document based on this

template, remove the content, and start writing their paper
| Note that in this template, you may have a multi-

paragraph

Here the “root” is the default term in the tree and all the
text blocks are considered as their children by default. The
root is considered as level 0. The term “USENIX Example
paper” is the child of the root. This is considered a level 1
child. The term “Abstract” is level 2 text and the text block
under it (which is “This is an example .”) is formed as the
child as the left margin value of the text block “abstract” is
more than its immediate text block. This is considered as
level 3 text. The paragraph text is considered the last level
text.

Referring to FIG. 4A, the tree structure is flattened by
padding with the additional content 426. The generated flat
files are stored in a .txt format. These flat files comprise
custom formatted sentences, which are formed by leverag-
ing the tree-level information. Suppose a paragraph in the
PDF document has ‘n’ levels in the tree structure, in which
level ‘n’ corresponds to the paragraph text, level ‘n-1’
corresponds to immediate heading, level ‘n-2" corresponds
to the immediate heading of ‘n-1" and so on. The following
is an example of creating the flattened text from the tree.

<<“Hlevel_1-text . . . # level_‘n-2"_text # level_‘n-

1’_text # level_‘n’_text>>

A separate entry exists for each paragraph in the flat file
if a section contains multiple paragraphs. The same proce-
dure is followed recursively for all the text present in the
document. Additional information in the following format is
prepended for every sentence present in the flattened file
with a custom text such as “This is” and “in”.

<<Custom words>><<]evel_text,>><<level_text,>> . ..
<<Last_level_text>>

In an example, custom words may be the user-provided
words that can be a single word or a combination of multiple
words.

level_text,, level_text,, are the level texts from the tree.

Last_level_text is the actual paragraph text.

The order of level information in sentences present in flat
files plays a crucial role in improving the efficiency of QA
system response. Hence, flat files are generated in both
ascending and descending order of ‘k’ level information. For
example, if k=2, the custom formatted sentences in the flat
file are as presented below.

i. <<*“This is # level ‘n-1"_text # level ‘n-2"_text . . .
Last_level_text>>—This sentence is generated in
descending order of level information in tree.

ii. <<“This is # level ‘n-2’_text # level ‘n-1" text . . .
Last_level_text>>—This sentence is generated in
ascending order of level information in the tree.

Table 1 shows some of the statements from the flat file
that may be generated from the sample tree structure. The
statements are generated for the abstract section of the
document. The abstract has two paragraphs. The first para-
graph is starting with “This is an example . . . ” and
the second paragraph is starting with “Note that in this
template The statements are ordered using two-levels,
i.e. k=2. The two levels that are considered are level 1 and
level 2 text blocks from the tree.

10

15

20

25

30

TABLE 1

Statement No.

Statements in flat file

1

This is Abstract USENIX Example Paper This is an example for a USENIX
paper, in the form of an HTML/CSS template. Being heavily self-referential,
this template illustrates the features included in this template. It is expected
that the prospective authors using HTML/CSS would create a new document
based on this template, remove the content, and start writing their paper

This is Abstract USENIX Example Paper Note that in this template, you may
have a multi-paragraph abstract. However, that it is not necessarily a good
practice. Try to keep your abstract in one paragraph, and remember that the
optimal length for an abstract is 200-300 words.

This is USENIX Example Paper Abstract This is an example for a USENIX
paper, in the form of an HTML/CSS template. Being heavily self-referential,
this template illustrates the features included in this template. It is expected
that the prospective authors using HTML/CSS would create a new document
based on this template, remove the content, and start writing their paper.
This is USENIX Example Paper Abstract Note that in this template, you may
have a multi-paragraph abstract. However, that it is not necessarily a good
practice. Try to keep your abstract in one paragraph, and remember that the
optimal length for an abstract is 200-300 words.

<<*“This is # level ‘n-1"_text # level ‘n-2" text>>
The whole concatenated text is shown below (Here, "
denotes the beginning of flat tree text).
<<*“This is # level ‘n-1’_text # level ‘n-2’
text>>"<<“#level 1 text # level ‘n-2" text # level ‘n—
1’_text # level_‘n’_text>>
Flat files are generated using the ‘k’ levels information,
where ‘k’ (k<=n) is the total number of levels considered for
a flat-file generation. The general format of the flat file
generation is as below:

In all the example statements shown in Table 1, the
starting two words, i.e. “This is” are the custom words. The
words “Abstract” and “USENIX Example Paper” are level
1 and level 2 texts. Statement 1 and Statement 2 are related
to first paragraph statements and second paragraph state-
ments having the tree text in ascending order. Statement 3
and Statement 4 are related to the first paragraph having the
tree text in descending order for both the statements.

Embeddings in the vector space are created and saved 430
using Sentence Transformers for all the sentences in the
flattened files (referred to as corpus embeddings). A RDT

60

65

US 12,412,044 B2

15

429 is configured to pre-train the model such as “msmarco-
distilbert-base-v2” to create the embeddings. The model is
trained 419 on the MicroSoft Machine Reading Compre-
hension (MSMARCO) Passage Ranking dataset with 500k
actual queries from Bing search. After creating the embed-
dings, the embeddings are stored in the elastic search
database, a non-structured query language (NoSQL) data-
base. Elastic search is a search engine based on the Lucene
library, which provides storage and search functionalities for
large datasets.

Queries in a Multimodal conversation 410 are submitted
through a multimodal user interface. The multimodal query
input 411 can be a combination of one or more multi modes
such as text, speech, image, gesture, touch, map, etc. The
input query is parsed 412 using a multimodal parser 416.
Multimodal Entity Recognizer (MER) 417 module identifies
one or more entities in the multimodal query 413. MER in
this embodiment is configured using Natural Language
Processing, Computer Vision, and Speech technologies.
MER is also used to tag the words (using POS tagger) and
objects (using object recognition). In this example, a POS
tagger may be software that facilitates reading a text in some
language and labelling each word in that texts with its
appropriate part-of-speech based on its definition and con-
text. Parts-of-speech include nouns, verbs, adverbs, adjec-
tives, pronouns, conjunctions, and the like. MER translates
the multimodal representations using modality translation
and produces joint representations of multimodal content
such as images and text.

The Semantic Dependency Parser 418 module identifies
the dependencies among entities 414 (e.g., multimodal enti-
ties) that have a semantical relationship. The Semantic
Dependency Parser 418 may identify at least one semantic
relationship between the entities 414. The system deter-
mines the query intent and context 415 based on the con-
versation. Query and context embeddings 431 for the speci-
fied query are prepared using the RDT 429. The Semantic
Dependency Parser 418 may output dependency information
that represents at least one relationship.

The query and context embeddings 431 and corpus
embeddings 430 are compared based on their semantic
equivalence. The semantic similarity is calculated between
the corpus embeddings and query embeddings, for example,
using cosine similarity 432 to determine a semantic score.
The key terms in the given query are identified, and this
semantic score can be used to find the closest corpus
embeddings for a given query and context embedding based
on the key terms and tree structure, and retrieve the top-k
sentences as responses 433. Here ‘k’ is the number of
returned answers based on decreasing order of the semantic
score. The region(s) of the text in the tree, called Extent(s),
is determined based on the key terms matching in the
hierarchy (such as heading, sub-heading, sub-sub-heading,
etc.). Each Extent 434 is growing or shrinking according to
the key terms, sequence of the queries, and context at the
point in the conversation. The score for each occurrence of
each term is weighted and a weighted score 435 is calculated
for each sentence in the flattened tree structure correspond-
ing to the determined Extents. Re-ranking may be performed
using the pre-trained model such as “ms-marco-electra-
base,” a cross encoder model having better re-ranking effi-
ciency. As the data can be present in multiple paragraphs, all
the sequential paragraphs should be returned as an answer to
the user. The top-k re-ranked responses are determined at
step 436. The top answer from the flat tree structure is
retrieved (by splitting with <**) and relevant answers are
prepared with the proper context for a given query 437. The

10

15

20

25

30

35

40

45

50

55

60

65

16

flat tree structure that is extracted is used to search the tree
to determine: (a) the tree node in which the paragraph (level
‘n’) text is present, (b) the paragraph heading node for node
returned in (a), and (c) all the children of the node returned
in (b). Finally, the responses are provided to the user 438
through a multimodal user interface. The conversation is
continued with the next multimodal query input 411. The
query patterns are identified from the sequence of queries in
a conversation and based on the responses provided and
feedback from users, the RDT 429 is updated according to
the document contents and query patterns 439.

The RDT 429 is based on sentence transformers. Sentence
transformer is a framework for generating the embeddings
for textual data. Textual data can be both word and sentence
embeddings. Sentence transformers are based on trans-
former models such as BERT, RoBERTa, DistilBERT, and
the like. DistilBERT is a small, fast, and light transformer
model that is trained by distilling a BERT base. They also
offer GPU support to fasten the process. Sentence embed-
dings are created for all the sentences that are present in flat
files referred to as corpus embeddings.

FIGS. 4E and 4F show an example of a query 455 and its
corresponding embedding 460 generated by the RDT in the
vector space. The RDT 429 is trained with sample utterances
along with the intents of the sentences. The sample utter-
ances can be provided in file types such as CSV/excel/txt
file. The sample utterances are treated as the document
collection store for all the activities such as document
retrieval, handling semantics, identifying the intent, for
example. The RDT 429 is also capable of processing the
semantics of a sentence. The sentence embeddings are
compared with the embeddings of all the documents present
in the document store. The embeddings are compared in a
vector space using similarity measures, such as cosine-
similarity, to find sentences with similar meanings. The RDT
429 can also identify query intent based on the training data
that is provided. A machine learning model is trained with
the training data that includes sample utterances and their
associated intents. During the runtime execution, the model
performs semantic analysis using the trained utterances with
reference to the user query. The intent of the most seman-
tically equivalent utterance may be considered as the intent
of the user query. Semantic comparison is performed
between the documents in the document store and the most
relevant document is returned based on the similarity score.
Traditional search engines are capable of returning the
documents based on lexical matches where are the trans-
former-based semantic search is capable of improving the
search accuracy by finding and understanding the contents
of the query. The basic idea behind doing the sematic
comparison is to embed all the documents present in the
corpus (which can be sentences, words, or documents) and
query into the same vector space. The corpus embeddings
which are close to the query embeddings are considered as
semantically similar to each other. As shown in FIG. 4F, the
query embedding Q1 is close to embedding for sentence S4.
Hence, they can be considered as similar to each other.

Any distance/similarity measuring metric such as cosine
similarity Euclidean Distance, Manhattan Distance, Jaccard
Similarity, or Minkowski Distance can be used. Sentence
transformers return a set of the most pertinent documents.
These documents are usually ordered by the pertinency
score which is between O and 1. If the pertinency value is
closer to 0, then it means that the document is less pertinent
to the query, and a value closer to 1 indicates that the
document is pertinent to the query. The query set returned
may have both pertinent responses and non-pertinent

US 12,412,044 B2

17

responses. It is challenging to filter out non-pertinent
responses and find only the pertinent responses. Relevant
responses can be identified in the below ways.

One potential way of identifying the pertinent responses
is to identify the key terms and assign weights to the key
terms. The total weight score is calculated for sentences and
the sentence with a higher score is identified as the most
appropriate response. The sentence transformer is extended
in RDT 429 by adding an extra layer on top of the results
layer. One potential way to identify the key terms may be by
leveraging the tree information. The text at level n is taken
from the tree and is assigned a unique weight W. If a query
has ‘n’ key terms, the n unique weights are represented by
[W,., W,, W,W,_]. The total weight of a sentence (i.e.,
sentence score) is calculated by the below formula:

WScore(S;) = ZW”
i=0

where WScore is the weighted score of statement S, n is the
number of key terms, and W, is the weight related to key
terms. The sentence score becomes critical when multiple
sentences have common terms.

The order of terms in the query and order of terms in
sentences in a flat-file is used in retrieving the relevant
documents. The score is increased if the order of terms in
both query and sentence are the same. The RDT 429
identifies the rules based on the top results that are retrieved
by the system. The learning can be in the order of key terms.
These rules are stored and reused in subsequent executions.
The benefits of reusing already identified rules include: (a)
retrieve the most relevant documents from the corpus (docu-
ment repository), (b) filter out non-relevant documents, and
(c) decrease solution space, where the solution space is a set
of all feasible solutions that can be used in future operations.

FIG. 5A is a block diagram of an example of a TreeBERT
architecture of an RDT 500 for the question answering
system. The RDT 500 may be the RDT 429 shown in FIG.
4A. As shown in FIG. 5A, the RDT 500 includes three
layers: a processing layer 502, a semantic retriever layer
504, and a reader layer 506. The processing layer 502
comprises two sets of tasks: tree operations 508 and create
and store corpus embeddings 510. In the processing layer
502, tree-related operations 508 such as extracting structural
information 512 and generating tree structure, generating a
meta JSON file 514, and creating a corpus 516 by extracting
key values from the domain ontology, generating flat files,
and creating custom formatted sentences, are performed.
These custom formatted sentences are used to train the
bidirectional transformer 518 of the RDT 500, which was
trained for NLP activities, such as short answer retrieval.
Corpus embeddings are created 520 using sentence trans-
formers for all the sentences present in the flat file. A
pre-trained model, such as “msmarco-distilbert-base-v2.” is
used to create the embeddings. The embeddings are stored
522 in an elastic search database, a non-relational database
for operations such as comparing them with other embed-
dings for retrieving similar documents. The operations in the
processing layer 502 are performed when (a) the domain-
specific documents are ingested into the system initially, (b)
new documents are added to the system, and (c) any of the
existing documents are modified in the system.

After the operations in the processing layer 502 are
performed, the operations/tasks of the semantic retriever
layer 504 are performed for all the queries that are posted to

20

25

30

35

40

45

50

55

60

65

18

the system. The grammatical structure between the words in
the query is identified using dependency parser and POS
tagging 524. Entities are identified 526 from the query using
the custom domain NER model along with dependency
parser relations and POS tags. Embeddings are created 528
for the query (referred to as query embeddings) using the
same sentence transformer that is used initially to create the
corpus embeddings. A semantic comparison of query
embeddings and corpus embeddings is performed as a next
step. The semantic similarity is computed 530 between the
corpus embeddings and query embeddings using cosine
similarity to find the closest corpus embeddings. The simi-
larity comparison is required to find the most relevant
documents from the corpus for a given query. Key terms and
the order of key terms are identified 532 in all the relevant
corpus responses and queries using the tree structure. Cus-
tom weights are assigned to key terms 534, and the total
weighted score is calculated for all relevant responses. Top-k
responses are determined based on the question context and
are ordered based on the total weighted score/semantic
score. The responses are retrieved 536 based on the close-
ness between the corpus and query embeddings. A cross
encoder transformer may be used to find the best match from
the top 1' documents. The cross encoder transformer is a
variant of the transformer model 518 that is used for finding
the best answer and improve the responses by re-ranking
538 the retrieved 540 top ‘k’ responses. The context may be
extracted from the query using NLP techniques such as
n-gram analysis, parts-of-speech tagging, or pre-trained
deep learning models such as recurrent neural networks
(RNNG5) for analyzing the sequential nature of language, and
long short-term memory (LSTM) that can check the long-
range dependencies. Rules/query patterns are identified 542
using the order of the key terms, and the transformer model
518 is trained to learn the patterns to improve the response.
At Reader 506 level, the most suitable text is retrieved 544
using the transformer model 518 based on the closed
responses to determine a short answer 546. This is useful in
returning one-word answers typically for questions that
contain who, what, where, when, why, how, how many.

FIG. 5B is an illustration of a portion of a sample
document 550, and FIG. 5C is an example of an equivalent
portion of text 552 from the HTML file that is generated
from the portion of the sample document 550 shown in FIG.
5B. Properties such as indentation, paragraph text, font size,
and font color is shown in the underlined portion.

FIG. 5D is an illustration of an example of the equivalent
Meta JSON file 554 for a portion of the sample document
550 shown in FIG. 5B. FIG. 5D shows important properties
such as text, font size, font-weight, indentation, page num-
ber, or any combination thereof.

FIG. 5E is an illustration of an example of the equivalent
tree structure 556 for the selected paragraphs.

FIG. 5F is an illustration of an example of the flattened
tree structure 558 for the selected paragraphs.

FIG. 5G is an illustration of an example of the equivalent
embeddings in vector space 560 for the selected paragraphs
using the sentence transformers.

FIG. 5H is an illustration of an example of the equivalent
query embeddings in vector space 562 using the sentence
transformers and the similarity score for the statements. It
can be observed that the paragraphs related to the question
have better similarity scores than the rest of the statements.

FIG. 51 is an illustration of an example of the output 564
of the cross encoding. It can be observed that the confidence
is increased from 0.48 to 0.97 after cross encoding.

US 12,412,044 B2

19

FIG. 5] is an illustration of an example of the output 566
of a relevant paragraph retrieval from the tree structure.

While the disclosure has been described in connection
with certain embodiments, it is to be understood that the
disclosure is not to be limited to the disclosed embodiments
but, on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims, which scope is to be accorded the
broadest interpretation so as to encompass all such modifi-
cations and equivalent structures as is permitted under the
law.

What is claimed is:

1. A system comprising:

a memory; and

a processor comprising a reinforcement document trans-

former configured to:

extract structural information for each corpus docu-
ment;

generate a tree structure for each corpus document
based on extracted structural information of the
corpus document;

generate a meta javascript object notation (JSON) file
based on each tree structure;

extract a key value from the meta JSON file using a
domain ontology;

create one or more corpus embeddings for one or more
sentences in a corpus;

store the one or more corpus embeddings in the
memory;

perform a semantic comparison of query embeddings
and the one or more corpus embeddings;

determine a closest corpus embedding by identifying
relevant documents from the corpus for one or more
query inputs;

retrieve one or more corpus responses based on the
closest corpus embedding using a transformer
model; and

identify key terms in the one or more corpus responses
and query using the tree structure to identify most
appropriate corpus response.

2. The system of claim 1, wherein the reinforcement
document transformer is further configured to:

identify an order of the key terms.

3. The system of claim 1, wherein the reinforcement
document transformer is further configured to:

compare the key terms with the corpus response; and

determine an extent of a content based on the key terms

matching in a level of a hierarchy.

4. The system of claim 1, wherein the processor is
configured to use custom formatted sentences to train the
reinforcement document transformer.

5. The system of claim 1, wherein the reinforcement
document transformer uses a pre-trained model to create the
one or more corpus embeddings, wherein sentence trans-
formers are used for each sentence in a flattened tree
structure of a corpus document.

6. The system of claim 1, wherein the memory is an elastic
search database.

7. The system of claim 1, wherein the reinforcement
document transformer is further configured to:

assign custom weights to key terms; and

compute a total weighted score for the one or more corpus

responses.

8. The system of claim 1, wherein the one or more corpus
response are retrieved based on a closeness value between
the corpus and the query embeddings.

w

20

25

30

40

45

50

55

60

65

20

9. The system of claim 1, wherein the processor is further
configured to:
extracting meta content from each corpus document using
a domain ontology;

identify structure characteristics to obtain the tree struc-
ture that represents contents of respective corpus docu-
ments in a hierarchical structure;

pad the contents in one or more parent positions of the tree

structure to obtain a flattened tree structure; and
output the flattened tree structure.

10. The system of claim 9, wherein the flattened tree
structure represents enriched content of a corpus document
of the respective corpus documents.

11. A system comprising:

a memory; and

a processor comprising a reinforcement document trans-

former configured to:

create one or more corpus embeddings for one or more
sentences in a corpus;

store the one or more corpus embeddings in the
memory;

perform a semantic comparison of query embeddings
and the one or more corpus embeddings;

determine a closest corpus embedding by identifying
relevant documents from the corpus for one or more
query inputs;

refrieve one or more corpus responses based on the
closest corpus embedding using a transformer
model;

assign custom weights to key terms; and

compute a total weighted score for the one or more
corpus responses to identify most appropriate corpus

response.
12. The system of claim 11, wherein the processor is
further configured to:

extract structural information from a corpus document;

generate a tree structure based on the extracted structural

information;

generate a meta javascript object notation (JSON) file

based on the tree structure; and

extract a key value from the meta JSON file using a

domain ontology.

13. The system of claim 11, wherein the reinforcement
document transformer is further configured to:

identify an order of the key terms.

14. The system of claim 13, wherein the reinforcement
document transformer is further configured to:

compare the key terms with a respective corpus response;

and

determine an extent of a content based on the key terms

matching in a level of a hierarchy.

15. The system of claim 11, wherein the processor is
configured to use custom formatted sentences to train the
reinforcement document transformer.

16. The system of claim 11, wherein the reinforcement
document transformer uses a pre-trained model to create the
one or more corpus embeddings, wherein sentence trans-
formers are used for each sentence in a flattened tree
structure of a corpus document.

17. The system of claim 11, wherein the one or more
corpus responses are retrieved based on a closeness value
between the corpus and the query embeddings.

18. The system of claim 11, wherein the processor is
further configured to:

extracting meta content from each corpus document using

a domain ontology;

US 12,412,044 B2

21

identify structure characteristics to obtain a tree structure
that represents contents of respective corpus documents
in a hierarchical structure;

pad the contents in one or more parent positions of the tree

structure to obtain a flattened tree structure; and
output the flattened tree structure.

19. The system of claim 18, wherein the flattened tree
structure represents enriched content of a corpus document
of the respective corpus documents.

20. A system comprising:

a memory; and

a processor comprising a reinforcement document trans-

former configured to:

generate a tree structure for each corpus document
based on extracted structural information of the
corpus document;

create one or more corpus embeddings for one or more
sentences in a corpus;

10

15

22

store the one or more corpus embeddings in the
memory;

perform a semantic comparison of query embeddings
and the one or more corpus embeddings;

determine a closest corpus embedding by identifying
relevant documents from the corpus for one or more
query inputs;

refrieve one or more corpus responses based on the
closest corpus embedding using a transformer
model;

identify key terms in the one or more corpus responses
and query using the tree structure to identify most
appropriate corpus response;

compare the key terms with the corpus response; and

determine an extent of a content based on the key terms
matching in a level of a hierarchy.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

