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Abstract 

Eva is a neuro-symbolic domain-independent multimodal collaborative dialogue system that takes seriously that the 

purpose of task-oriented dialogue is to assist the user.   To do this, the system collaborates by inferring their intentions 

and plans, detects obstacles to success, finds plans to overcome them or to achieve higher-level goals, and plans its 

actions, including speech acts, to help users accomplish those goals. In doing so, the system maintains and reasons 

with its own declaratively-specified beliefs, goals and intentions, and explicitly reasons about those of its user. Because 

Eva can track different users' mental states, it can engage multiple agents in multi-party dialogues.  Reasoning is 

accomplished with a modal Horn-clause meta-interpreter that enables computable inference within the subset of logic 

implemented. The system employs both hierarchical and backward-chaining planning, operating over a rich modal 

logic-based knowledge and action representation. The planning and reasoning subsystems obey the principles of 

persistent goals and intentions including: 1) The formation and decomposition of intentions to perform complex 

actions, 2) the conditions under which persistent goals and intentions can be given up, and 3) persistent goal and 

intention revision using the relativizing formulas that are created during the planning process.  The system treats its 

speech acts just like its other actions.  This general approach enables Eva to plan a variety of speech acts, including 

requests, informs, questions, confirmations, offers, acceptances, and emotive expressions.     Because the dialogue 

engine is a planner, as the dialogue proceeds, the system can flexibly generate, execute, and potentially repair its plans 

using physical, digital, and speech actions. Importantly, Eva can explain its utterances because it has created a plan 

that caused it to utter them.1  

1 Introduction 

In this paper we describe Eva, a fully-functional neuro-symbolic domain-independent collaborative dialogue system 

that takes seriously the tenet that the purpose of task-oriented dialogue is to assist the user.  Eva attempts to collaborate 

with its users by inferring and debugging their plans, then planning to overcome obstacles to achieving their higher-

level goals.  In order to do so, Eva represents and reasons with beliefs, goals and intentions (“BDI”)2 of the user and 

the system itself. Because the dialogue engine is a planner, as the dialogue proceeds, the system is able to go beyond 

scripted, slot-filling, or finite state dialogue behavior to flexibly generate, execute, and potentially repair its plans 

using both non-communicative actions and speech-acts. As part of its reasoning, Eva performs plan/goal recognition 

on the user's mental state.  Importantly, the system itself decides what to say, not the developer, by obeying the well-

studied principles of persistent goals and intentions (see Cohen and Levesque [1]).  Importantly, thanks to the BDI 

underlying machinery, Eva is able to explain its actions and its plans, thus achieving more trustworthy interactions.   

A useful and meaningful dialog system in a rich task-oriented natural language conversational setting must be 

collaborative. Indeed, collaboration is so essential to society that we teach our children to be collaborative at a very 

early age [2]. True collaboration is more than just being “helpful”, in that one could help someone else by setting up 

the “environment” such that the other agent succeeds.  For example, we might be helpful with children in such a way 

that they do not know what we have done to help them. However, most conversational systems, even those dubbed as 

“assistants,” do not know how to be helpful, much less to collaborate. At the dialogue level, they are generally 

incapable of inferring and responding to the intention that motivated the utterance. We and others have argued that 

deep collaboration involves agents’ (mutual) beliefs and joint intentions to ensure that the joint goals are achieved [3–

6]. Whereas physical actions are planned to alter the physical world, communicative acts are planned to alter the (joint) 

 

1 ACM Class: I.2.7; I.2.8; I.2.4; I.2.3; I.2.11.  Additional Keywords:  Dialogue, planning, reasoning, multiagent systems, modal 

logic, intention, plan recognition, theory of mind 

2 We will use the expression “BDI” even though the system deals with (persistent) goals rather than desires.  
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mental and social states of the interlocutors. Dialogue is a special case of collaboration that has properties of its own.  

A collaborative dialogue system is able to combine information from a representation of domain and communicative 

actions, a representation of the world and of its interlocutors’ mental states, and a set of planning and plan recognition 

algorithms, in order to achieve its communicative goals. Among the actions that are planned are speech acts, some of 

whose definitions we have given in various papers of ours (e.g., [7–9]).    The system thus plans its speech acts (e.g., 

to ask for the user’s age) just like it plans its other actions (e.g., to make an appointment for the user). The approach 

dates back to work done at Bolt Beranek and Newman [10–12], at the University of Toronto [9, 13, 14], and at the 

University of Rochester (e.g., [15–19]). Such systems attempt to infer their conversants’ plan that resulted in the 

communication, and then to ensure that the plans succeed.  Recent works in this vein include [5, 17, 20, 21].  

We claim this expectation for dialogue and task collaboration derives from implicit joint commitments or shared plans 

[1, 5, 6, 22] among the conversants, here the task-oriented dialogue system and its user, towards the achievement of 

the user’s goals. Such a joint commitment implies that the parties will help each other to achieve the jointly committed-

to goal, and will inform one another if that goal becomes impossible.3 Whereas it is possible to build dialogue systems 

that reason with the formalization of joint intention/commitment [23], the present system attempts to behave according 

to JI Theory principles (cf. [18, 19, 24, 25]).4 A central feature of this approach is that the system will attempt to infer 

as much of the user’s plan as it can, will try to identify obstacles to its success, and plan to overcome those obstacles 

in order to help the user achieve his/her higher-level goals. Thus, plan recognition and planning are essential to Eva’s 

architecture and processing. 

Though the collaborative plan-based approach to dialogue is an attractive theory that has received many years of 

research (e.g., [1, 8–10, 13, 15, 16, 30–45]), few full-scale implementations have taken place that incorporate all the 

components needed to create a system that can engage in useful collaborative dialogues.5 We have built a dialogue 

system whose internal state is declaratively specified as logical expressions, which provides a basis for a reasoning 

system, as well as a formal semantics for the system’s internal states and its inferences.  As a result, we and the system 

itself are able to explain its inner workings.  In other words, the system’s state is not merely latent [46], but transparent. 

The planning-based approach detailed here is quite different from approaches in present research or commercial 

dialogue systems, and even plan-based approaches of the past.   Essentially, rather than just populate a system “belief 

state” made up of so-called “intents” with “slots” and “values” as present conversational systems do [47], the Eva 

system maintains a far more expressive representation of beliefs, goals, and intentions that drive the collaborative 

planning and plan recognition system.  Furthermore, the same reasoning mechanism supports multi-agent (person or 

bot) dialogues.  In doing so, the system uses a rich knowledge representation that describes its user and its domain of 

discourse.6  

Whereas much of the basic theory has been developed for some time, among the novelties here is how the pieces can 

be combined in an operational dialogue system that provides collaborative dialogue capabilities.  For example, current 

generation “intent+slot” systems have great difficulty with the user’s answering a slot-filling question (“what time do 

you want the reservation?”) with a statement of a constraint (“not before 11am”).  Furthermore, such systems assume 

that it is the user who fills slots.  But systems can propose potential slot fillers (“would you like 9 am?”), to which a 

 

3 There is still an asymmetry between the system and user’s commitments.  Namely, the joint commitment between the system and 
user is relative to the user’s goals.  Thus, if the user changes his/her goal, s/he can drop the joint commitment (e.g., simply hang 

up).  However, the user is committed to helping the system help the user.  Thus, the system cannot simply hang up by changing its 

commitment; it needs to close the conversation properly. 

4 We argue that the central tenet of a collaborative dialogue is a joint commitment to understanding what each other means [26], 
i.e., what the parties’ locutionary and illocutionary [27] intentions are.  Such a joint commitment underlies backchannels and 

grounding [28].  Of course, there are instances of non-cooperative dialogue in which even that joint commitment may not apply 

(e.g., a cross-examination) [29]. 
5 The work of Allen et al. at the University of Rochester (see references in the text, most recently Galescu et al. [19]) is a notable 

exception. 

6 Of course, the hope of the present machined learned approaches to dialogue is that such knowledge representations can be avoided, 

and the needed inferences will somehow emerge from the latent representations (of text, knowledge graphs, or some other large-

scale resource).  Given the complexity of the inferences that Eva performs, we believe that remains to be seen. 



3 

 

 

 

user may then accept, reject, or negotiate [48].  The parties have together filled the slot, not just one of them.7   We 

accomplish the reasoning with a Horn-clause interpreter (realized in Prolog), which enables computable inference 

within its subset of logic.   Many researchers have thought the logic of intention to be too complex to implement and 

to support a dialogue system.   However, the Eva system operates in real-time using spoken language and driving a 

complex avatar.    This paper shows what components are needed in order to create such a functioning system.   With 

such a system in place, we can now go back and revisit some of the research of the past three decades that can help to 

support even more expressive dialogues. 

1.1 Sample Dialogue 

To give the reader an idea of the kinds of dialogues that Eva can support, we present one example set in a vaccination 

appointment scheduling setting. Another sample dialogue in a completely different domain can be found in the video 

([2,3]) shown in Section 2.2.  

 

7 See [49] for further discussion. 

Nr. Utterance 

1.  U:  Are there any covid vaccination centers nearby 

2.  
S:  Yes, the CVS Covid vaccination center is located at 130 Main St and this location is 6 miles 

away from you via the following route: turn right, go straight, then turn left. 

3.  S:  Would you like to be vaccinated at a Covid vaccination center? 

4.  U:  Yes 

5.  S  to CVS: Do you have covid vaccine available? 

6.  CVS to S: Yes 

7.  S to U: OK, I believe that the CVS covid vaccination center has Covid vaccine. 

8.  S:  How old are you? 

9.  U:  why do you ask 

10.  S: The reason is that I need to determine whether you are eligible for the vaccine. 

11.  S: Sorry to repeat myself… How old are you? 

12.  U:  45 years old 

13.  S:  What is your occupation? 

14.  U:  why 

15.  S:  The reason is I need to determine if you are an essential worker 

16.  S:  Sorry to ask you again, but what is your occupation? 

17.  U:  I am a teacher 

18.  
S: You are eligible for the covid vaccine and appointments are available at CVS on June 26 at 

9am. 

19.  S:  Would you like me to make an appointment at a covid vaccination center? 

20.  U:  Yes, please 

21.  S:  What time would you like the appointment? 

22.  U:  Monday the earliest time available 

23.  S:  the earliest time available is 9 am.  

24.  S:  Would you like me to make an appointment for you at 9 am? 

25.  U: Yes, please 

26.  S: Ok I made an appointment for you at CVS on June 26 2023 at 8am. 

27.  S: Is there anything else I can help you with? 

https://vimeo.com/793322160
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In this sample dialogue (see more details in Appendix B), we see that the system can:   

• Plan its actions to achieve its goals,  

• Infer the goals and intentions that the user likely has,  

• Plan to assist the user by proactively informing what it believes the user needs to know (e.g., the route),  

• Handle the user’s over-answering 

• Handle constraints (e.g., “the earliest time available”) 

• Reason with domain rules (e.g., a person who is less than 50 years old is eligible for the covid vaccine if that 

person is an essential worker),  

• Explain its actions (e.g., its reasons for asking about the user’s age and occupation) 

• Generate new knowledge acquisition goals.   

• Reason about who knows the answers to its knowledge acquisition goals (e.g., CVS), 

• Ask that third party a question, 

• Develop and execute a plan to accommodate the user’s changing her mind by achieving the user’s revised 

goal. In the process, the system undoes what has already been done in the process of achieving the user’s 

original goal (i.e., it reschedules the user’s appointment from Monday at 9 to Monday at 10). 

The rest of the paper describes how our planning-based dialogue system can support such behavior. Moreover, 

Appendix B will revisit this example in greater detail. 

1.2 Map of the Paper 

In Section 2 we describe the systems architecture, including its essential representations, its basic operating loop, its 

embodiment as an avatar, and its logical form meaning representations. Section 3 presents the formalism, mostly 

drawn from Cohen and Levesque [1], including the base Horn clause logic, the modal operators, and the action 

representation. Section 4 shows how Eva’s Horn clause modal logic meta-interpreters can reason about and maintain 

the system’s rational balance among its mental states. Given this machinery, Section 5 discusses how speech acts are 

represented as planning operators, illustrated with three types of questioning speech acts along with requests. Section 

6 presents our approach to collaboration, especially its reliance on planning and plan recognition.  

Eva is driven by its beliefs about its own and its user’s goals and intentions, so it is important to know where goals 

come from.  In particular, in Section 6 we show how goals arise during the course of planning, including how a model 

of the user’s mental states underlies the system “slot-filling” capabilities.  Section 8 describes our BDI architecture, 

which reasons with these mental state formulas to form plans of action incorporating both domain and communicative 

actions.  This architecture is shown to have an operational semantics based on the specification of rational interaction 

provided by Cohen and Levesque [1]. Section 9 discusses how the system chooses which of its many intentions to 

execute next, and Section 10 presents Eva’s approach to maintaining and using context. Among the important features 

of the example and system is how Eva handles requests for explanation during the dialogue. We discuss how 

explanation is accomplished in Section 11. 

28.  U: yes, i actually cannot make it on monday at 8  

29.  
S: Would you like me to reschedule your appointment at CVS that is currently scheduled on June 

26 2023 at 8? 

30.  U:  Yes 

31.  S: What date would you like me to reschedule your appointment at CVS to? 

32.  U:  Monday at 10 

33.  S:  Ok, I’ve rescheduled your appointment at CVS to a new time on June 26 2023 at 10am. 

34.  S: Is there anything else I can help you with? 

35.  U: No, thanks. 

36.  S: Glad to be of service. Goodbye! 
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Because this research digs deeply into the past four decades of a number of branches of AI research, we cannot possibly 

do justice to all the relevant work, but refer the reader to surveys of some of the relevant literature [50, 51]. We provide 

some of the major references in the text, and discuss in Section 12 some of the more recent work that is treading the 

same ground.  The appendices provide the details of the formalism, mostly taken from Cohen and Levesque [1], and 

some of the speech act definitions.  

2 Overall System Architecture 

Referring to Figure 1, Eva takes as input speech and other modalities (e.g., gesture, sketch, touch, vision, etc.), parses 

them into logical form meaning representations and fuses their meanings into logical forms (LFs) that incorporate one 

or more speech acts (sometimes referred to as dialogue acts).  Using the same representation of speech acts for planning 

and plan recognition [8, 9, 14, 17, 20, 52–54], the LF is input to a plan recognition process that attempts to infer why 

the user said/did what was observed.   Once a user’s plan is derived, Eva adopts the user’s goals as its own if they do 

not conflict with its other goals and obligations.  The system then collaborates by attempting to find obstacles to the 

plan [8, 9, 13, 17, 20, 52, 53], which it plans to overcome in order to help the user achieve their higher-level goals, 

resulting in intended actions.  Afterwards, it executes (some of) those intended actions, which may well involve 

communicating with the user, generating linguistic and multimodal output, including text-to-speech, graphics, and 

avatar behavior.  In the course of this processing, the system may access backend databases and commercial systems 

to gather and/or update required information and take needed actions.  We only discuss the dialogue manager in this 

paper, but first we mention the system’s inputs and outputs.  

2.1 Natural Language Parsing and Generation 

For many current task-oriented dialogue systems, the meaning representation is simply an “intent+slot” representation 

of an action and its arguments that, it is assumed, the system is being requested to perform [46, 55–57]. However, this 

is too simplistic a meaning representation to support logically expressive dialogues. Eva’s LF meaning representation 

involves more complex formulas that express both the speech actions that the parties are doing as well as the content 

of their utterances, which not only includes domain actions to perform8, but also complex operator combinations (e.g., 

comparatives, superlatives, Boolean combinations, temporal constraints, etc.), and operators over actions (e.g., 

“quitting smoking,” “permitting to be interviewed”). We provide in Section 12.2 a detailed comparison of the slot-

filling approach to dialogue with our plan-based approach that incorporates true logical forms (see also Cohen [49])).    

Eva maps utterances into “surface speech acts” [9, 14], from which it can infer the intended meaning of indirect speech 

acts. 

Although this paper will not discuss natural language processing per se, we briefly mention in reference to Figure 1 

that Eva employs a deeply learned neural sequence-to-sequence semantic parser whose encoder is a pre-trained 

CodeT5 language model  that we have fine-tuned on pairs of utterances and logical form (LF) meaning representations. 

The parser returns an LF representation that incorporates both the surface speech act as well as its propositional 

content.  These LFs are then input to the plan recognition component that starts reasoning about the user’s speech 

act(s) and what s/he was trying to achieve in performing them. The training of the parser is begun with “canonical” 

(affectionately known as “clunky”) utterances generated from logical forms that are derived from the backend 

application, as in the “Overnight” approach [58]. These canonical utterances are then paraphrased into natural 

language, using both machine resources and crowd-sourcing. Because the system makes use of a large-scale multi-

lingual language model during the parsing process, when building the system to be used in a language other than 

English, a relatively small number of human-generated paraphrases of the canonical utterances can be gathered in that 

language and added to the training data [59]. 

Natural language generation uses a hierarchical generator driven off the logical form structure that creates “canonical” 

utterances (the “clunky form”), which are then post-processed with a small set of rules to produce reasonable English 

output. This output is further passed on to translation services to produce output in other languages supported by our 

system. We have also successfully explored using LLM-based paraphrasing to go directly from clunky form to human-

like surface output. Thus, our symbolic dialogue system determines what to say while the LLM decides how to say it. 

We do not use large language models by themselves as generators because they are not sensitive to what the system 

 

8 They can include descriptions of actions to not do (e.g., “please don’t cancel my insurance”).   
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is intending to convey, potentially resulting in inappropriate or untruthful utterances at that stage of the dialogue. In 

addition, a generator needs to decide such issues as when to issue a pronoun, how to refer to entities, when to issue 

discourse markers, etc. So far large-scale language models do not provide general solutions to such problems. 

Because this paper is about collaborative dialogue, not the natural language processing itself, we will not delve further 

into the details of the NLP in the rest of this paper. Let us assume the parser can provide a proper logical form, and a 

generator can produce natural language from a logical form.  

2.2 Multimodal Input/Output 

Eva has been given a multimodal avatar embodiment (see Figure 2)  that accepts spoken language, camera-based 

input, and text, and produces spoken, textual, GUI, and face/head gestures as output. Below is a screen shot of a recent 

dialogue. The system tracks various emotional states and engagement in real-time, enabling it to generate responses 

to the user’s signaled states, using its model of the user’s beliefs and intentions [60]. Conversely, the system can 

generate facial gestures and rapport-building utterances to signal various emotional states, such as sadness. The cues 

for emotions (visual and via text-to-speech) are based on the words being generated, the logical forms generated in 

context, and discourse-level features (e.g., topic shifts).  As an example, consider if the system asked the user “Was 

there a reaction to that vaccination?”  and the user said, “Yes.”  The system can generate an empathic utterance (e.g., 

“That’s awful!”), even though the user issued a “positive” or “neutral” utterance. There is more to say about Eva’s 

multimodal capabilities, which will be covered in another paper.   

3 Knowledge Representation and Inference 

Below we present the knowledge representation that Eva uses, which is encoded as modal logic formulas describing 

the system’s and the users’ beliefs, goals, and intentions.  The reason for encoding the system’s knowledge in a logic 

is that it affords the more expressive representations required for engaging in substantive dialogues about tasks.  In 

Figure 1. Eva's architecture of a collaborative, planning-based dialogue system 
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the sections that follow, we will provide extensive examples of the kinds of representations the system maintains and 

its associated reasoning.  Our purpose then is to develop the tools sufficient to engage in expressive dialogues, not to 

focus on logic and reasoning per se.   Rather, we believe any system sophisticated enough to engage in such dialogues 

will need to make the distinctions that are encoded herein. 

In this section and in Appendix A, we describe the formalism and its semantics, drawn from Cohen and Levesque [1]. 

The Eva system uses a Horn clause-encoded first-order modal logic, with constants, variables, typed terms, n-ary 

predicates, conjunctions, disjunctions, negation of literals, and existential quantification. In addition, we include 

second-order predicates, such as superlatives, set operators, etc.   Predicates and actions take a list of arguments, with 

each argument specified by a role name, a variable, and a type drawn from an ontology.  Syntactically, we adopt the 

Prolog convention of signifying variables with capital letters. Thus, an argument list will be of the form: 

[Role:Variable#Term …]. Note that this use of the term ‘role’ is derived from natural language processing, as opposed 

to the planning literature.  From here on, assume all arguments presented have this form, though we will only typically 

specify the Variable. Importantly, Eva’s knowledge representation incorporates a belief operator (bel), along with two 

operators defined in terms of bel, for knowing whether a formula holds (knowif) and knowing the referent of a 

description (knowref). Likewise, it incorporates persistent goal (pgoal) and intend as modal operators, with pgoal 

taking a formula as an argument, and intend taking an action expression (see 3.5). Attribution of mental states, as well 

as plan recognition and planning, involves uncertainty. Each mental state has a probability argument, which will not 

be discussed in this paper. The probability of a pgoal or intention declines as more rules are applied, and as fan-outs 

(disjunctions) are created during planning and plan recognition. Where available, prior probabilities on intended 

actions are multiplied, lowering the score. A separate utility calculation could be performed for each intended action, 

with some domain predicates having negative utility (e.g., dead(user)), and some positive utility (e.g., 

vaccinated(user)).  We make no claims to having a theory of what utilities various actions and states should have.   

For understanding the formulas and reasoning that Eva uses, we note briefly here:9  Predicates over action expressions 

include: do, doing, and done. We also allow specific times to be arguments and have special “before” and “after” 

operators that apply to them. Eva takes advantage of basic Horn clause reasoning (as in Prolog), and incorporates two 

meta-interpreters for forward (‘→’) and backward (‘istrue’) modal logic reasoning, which are used to assert and to 

prove formulas, respectively. Prolog incorporates the not-provable operator ‘\+’, and does-not-unify operator ‘\=’, 

both of which we also use in the meta-interpreter. Thus, system tries its best to prove a proposition P given the rest of 

the system’s mental states and inference rules, but non-provability of P is different than proving ~P. 

 

9 The full syntax of our language is given in Appendix A. 

Figure 2.  Eva avatar, vision-based emotion recognition, dialogue, and a snapshot of the system’s beliefs, 

goals, and intentions. 
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3.1 Mental State Modal Operators  

The attitude modalities we employ are Belief (bel), Persistent Goal (pgoal), and Intending to Perform Actions 

(intend),10 along with two defined operators, knowif and knowref.  

3.1.1 Belief 

Modal logics of knowledge and belief have been well-studied, dating back to Kripke [61] and Hintikka [62].   We will 

use a Kripke-style possible worlds semantics of belief, such that propositions that an agent believes are true in all 

possible worlds that are related to the given one (the world the agent thinks s/he might be in).  Thus, for a well-formed 

formula P we say: 

Syntax: bel(X, P) — agent X believes formula P, if P is true in all of X’s belief-related worlds. (See Appendix A). 

If P is true in some of X’s belief-related worlds, but not in all of them, then the agent neither believes P nor believes 

~P.  

The bel modal operator also has a positive introspection property — if the agent has a belief that P, it has a belief that 

it believes that P, and conversely.    However, we do not adopt a negative introspection property -- the agent does not 

believe that P, it does not have to believe that it does not believe that P.  

For example, we will want to be able to state such formulas such as (after utterance 21 in the example from section 

1.1) that the user believes that the system wants to find out the date that user wants the system to make an appointment 

for the user.  One can see that there are multiple embeddings of modal operators in such a formula.  By the end of this 

section, the reader will be able to see how such formulas can easily be expressed.  The syntax and formal semantics 

of our modal operators is given in Appendix A.   

3.1.2 Goal 

The model of goals adopted in Cohen and Levesque [1] is that goals encode agents’ choices. This is modeled in a 

possible worlds semantics by having goal formulas P be true in all of the agent’s chosen worlds. These are not simple 

desires because desires can be inconsistent. However, the goals P can be false at some time and true at others, as 

would be the case for achievement goals. Among the worlds compatible with the agent’s beliefs are all the ones 

compatible with the agent’s goals (choices).  In other words, by assumption in Cohen and Levesque [1], the chosen 

worlds are a subset of the worlds consistent with the agent’s beliefs. 11  That does not mean that if the agent has P as 

a goal, it believes P is true. Instead, we require the converse (see Appendix A) — if the agent believes formula P is 

true, it is true in all belief-compatible worlds, so it is true in all chosen worlds, which are a subset of the belief-

compatible ones. The agent must choose what it believes to be true “now.”  

Syntax:  goal(X, P)  —  X has a goal that P is true, if  P is true in all of X’s chosen worlds.  Because of the way 

formulas are evaluated in terms of a world and time, P is true in the chosen world at the time of evaluation. Most 

often, however, P will incorporate a temporal predication.  

Agents are not unsure of their goals – if an agent has the goal that P, it believes it has the goal that P and vice-versa.  

Given the realism constraint discussed above, the goal modal operator also has a positive introspection property — if 

the agent has a goal that P, it has a goal that it has the goal that P, and conversely.  However, as with belief, we do not 

have a negative introspection property of goal itself.   Finally, based on the semantics given in Appendix A, an agent 

cannot have as a goal a formula that it believes to be impossible (the agent believes it will never be true.) 

3.2 Basic Axioms of the Modal Logic 

Given these operators, we provide axioms that they need to satisfy.  We assume all axioms of first-order logic. The 

system supports belief and goal reasoning with a KD4 semantics and axiom schema [64, 65] (see below and Appendix 

 

10 We are also starting to experiment with deontic concepts as well, including permit [41]. 

11 In Cohen and Levesque [1], we called this the realism constraint.  Some authors (e.g., [63]) have suggested that the possible 

worlds underlying beliefs should merely intersect with those that underlie goals.  That means that among one’s goal worlds are 

worlds the agent may think are impossible.  Cohen and Levesque [1] viewed that mental state as incoherent, and opted for the 

agent’s accepting what it cannot change (after all pgoals are achievement goals).    
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A for details). Specifically, bel(X,P) and goal(X,P)  means P “follows X’s beliefs/goals”.  ‘|=’ means ‘is satisfied in 

all worlds’:   

K:  If P is a theorem12,   |=  bel(X,P) and  |=goal(X,P)    – theorems are true in all worlds 

       |= bel(X,P ⊃ Q) ⊃ (bel(X,P) ⊃ bel(X,Q))  – agents can reason with their beliefs 

D:    |= bel(X,P) ⊃ ~bel (X,~P)   – agents’ beliefs are consistent 

        |= goal(X,P) ⊃ ~goal (X,~P)  – agents’ goals are consistent13 

4:    |= bel(X,P) ≡ bel(X, bel(X , P))  – positive belief introspection 

       |= goal(X,P)  ≡  goal(X, goal(X,P)) – positive goal introspection 

Realism: |= bel(X,P) ⊃ 𝑔𝑜𝑎𝑙(𝑋, 𝑃)  – agents’ chosen worlds include what they believe to be 

currently true. 

For this system, material implication ‘⊃′  is approximated using Prolog’s Horn clause reasoning.   

Whereas the axioms above license the system’s belief reasoning as sound relative to the semantic model, the system 

is incomplete and does not derive all the logical consequences of its beliefs.   

3.3 Defined Modal Operators 

A critical aspect of a system that reasons about its users’ mental states is that it can only have an incomplete model of 

them.  Specifically, we need the system to be able to represent that an agent “knows whether or not” a proposition is 

true, without its knowing what the agent believes to be the case.  For example, we might model that the user knows 

whether or not her car is driveable.   Likewise, the system needs to represent that an agent knows the value of a 

function or description, without knowing what the agent thinks that value is.  For example, the user knows his/her 

birthdate, social security number, etc.  Because Eva does not use a modal operator for knowledge, we define the 

concepts in terms of belief below.14  Whereas a number of recent epistemic planning systems incorporate a knowif 

operator, as applied to propositional formulas, none of them incorporate a modal logic knowref operator as applied to 

first-order formulas and their arguments.  

3.3.1 Knowing whether (knowif) 

Given the modal operator for belief, we can define operators that capture incomplete knowledge about another agent’s 

beliefs.  Specifically, we define an agent’s “knows-whether” or “knows if” a formula P as follows [8, 9, 13, 14, 39, 

66, 67] . 

knowif(X, P) =def bel(X, P) ∨  bel(X, ~P) 

In words, an agent X’s ‘knowing whether or not’ P is true is defined as either X believes P is true, or X believes P is 

false.  Notice that this is different between X’s believing (P or ~P) holds, which is a tautology.  One agent X can 

believe that another agent Y knows whether or not P holds without X’s knowing what Y in fact believes.  However, X 

believes Y is not undecided about the truth of P.  For this reason, in our prior example S can ask CVS a yes-no question 

as to whether CVS has covid vaccine because S believes CVS knows whether or not it has vaccine.  

3.3.2 Knowing the referent of a description (knowref) 

Of critical importance to dialogue systems is the ability to represent and reason with incomplete information about 

functions, values, etc.  Specifically, a system needs to represent that an agent knows what the value of the function or 

term is without knowing what that agent thinks that value is (or else the system would not need to ask).  For example, 

we should be able to represent that John knows Mary’s social security number without knowing what John thinks it 

is.  This is weaker than believing that the agent thinks the value is a constant, but stronger than believing that the agent 

 

12 See definition of Satisfaction (“|=”) given in Appendix A.  

13 This is different from having inconsistent desires.  Goals represent choices, and those choices are taken to be consistent. 

14 Unfortunately, English does not have a nice verbalization for “believes if”, so please refer to the definition when “knows if” is 

used.   Similarly, when we say “the user knows the referent of a description”, we will be using a definition in terms of belief.  
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thinks there merely is a value (i.e., Mary has a social security number).  The classical way to represent such expressions 

in the philosophy of mind is via a quantified-in belief formula [68–70].  Accordingly, we define an agent X’s knowing 

the referent of a description as15:  

knowref (X, Var^Pred) =def  ꓱVar bel(X, Pred), where Var occurs free in Pred 

The semantics for quantifying into beliefs and goals is given in Appendix A; in short, this expresses that there is some 

entity of which the agent believes has the property Pred.  Semantically, a value is assigned to the variable Var, and it 

remains the same value in all of the agent’s belief-compatible worlds. For example, the system may believe that agent 

X knows the referent of X’s social security number, without the system’s knowing what that number is.  Notice that 

this is different than the system’s believing X believes X has a social security number, for which the existential 

quantifier is within the scope of X’s belief. We argue below that the overriding concern of the present task-oriented 

dialogue literature involving “slot-filling” is better modeled with goals to knowref.  

Building systems that could represent and reason with this formula was a major accomplishment of the early work in 

plan-based dialogue systems [8, 9, 14, 34, 52, 71, 72], and see also Moore [73].  Yet, apart from the work from Allen’s 

group in Rochester, no recent systems have undertaken to plan speech acts (or any acts) using such representations.  

Indeed, the many epistemic planning systems that use the PDDL language or other propositional logic base cannot do 

so.   Cohen [49] shows that the task-oriented dialogue paradigm can be recast in our modal logic incorporating these 

expressions for so-called “slot-filling” goals.  Moreover, we show there and here how one needs to be able to quantify 

into modalities other than just belief, such as persistent goals.  

3.3.3 Intention as a species of persistent goal (pgoal) 

Intention is a concept critical to virtually all analyses of human cognition, including common sense, legal, 

philosophical, psychological, practical, linguistic, pragmatic, and social analyses.  The philosophies of mind and 

language include subspecialities on theories of intention, including notable works by Anscombe [74], Bratman [75], 

Grice [26], Searle [76], and many others. Following Grice, intention is a critical concept to enable an agent to reason 

about what a person meant in saying something, which led the Toronto group to focus on plans and plan recognition.  

However, the concepts that their plans used in that early work were only initial approximations to mental states. Cohen 

and Levesque’s analysis [28], which was further developed in Cohen and Levesque [1], provided a formalization of 

intention in a modal logic that shared with Bratman’s the notion of commitment.  However, unlike Bratman, Cohen 

and Levesque [1] defined intention in terms of goals (choices) that persist subject to certain conditions driven by the 

semantics and by the relativization of intentions on other mental states. Such internal commitments were shown to 

satisfy Bratman’s desiderata for a theory of intention.  

The representation of intention as a species of persistent goal (pgoal) is the basis for Eva’s operation.16   The idea is 

that simple goals can be ephemeral, so one cannot count on a simple goal or choice as having any consequences on an 

agent’s future actions.  Rather, agents need to be committed to their choices [28, 75].  We will typically assume in this 

paper that the phrases “want” and “need” will be translated into pgoal in the logical forms.   

We represent by pgoal(X, P, Q) the fact that agent X has a persistent goal to bring about the state of affairs satisfying 

formula P, relative to formula Q, and define it as: 

pgoal(X, P, Q) =def   

goal(X, ◊P) ∧ ~bel(X, P) ∧ before((bel(X, P) ∨ bel(X, □~P) ∨ ~bel(X, Q)), ~goal(X, ◊P))
17

  

That is, X does not currently believe P to be true and has a goal that P eventually be true (X is thus an achievement 

goal); X will not give up P as an achievement goal at least until it believes P to be true, impossible, or irrelevant.  By 

 

15 We read the ‘^’ operator as “such that”. 

16 We show here how to represent and reason with intention and persistent goal, and how to build a system that behaves according 
to the principles in Cohen and Levesque [1].  One could perhaps say that the system “has” approximations of intentions, plans, 

beliefs, etc., up to a level of delicacy.  We do not stake a claim on whether taking this “intentional stance” [77, 78] as seriously as 

we do means that the system in fact “has” intentions, only that it behaves according to the principles of intention.  

17 The definition below refers to linear time temporal operators, including ◊ for eventually, and □ for always.  See Appendix A. 
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‘irrelevant’ we mean that some other condition Q, typically encoding the agent’s reasons for adopting P, is no longer 

believed to be true.18  We frequently will relativize one persistent goal to another as part of planning.  If the agent does 

not believe Q, it can drop the persistent goal. However, if none of these conditions hold, the agent will keep the 

persistent goal. Cohen and Levesque [1] showed conditions under which having a persistent goal would lead to 

planning and intention formation.  See the formal semantics in Appendix A.   

For example, in utterance 19 of the sample dialogue, the system asks the user if the user wants (has as a pgoal) that 

the system make an appointment for the user.  The pgoal that led it to plan this question is represented as19: 

pgoal(sys, knowif(sys, pgoal(usr, P, Q)), R), where 

P = done(sys, make_appointment(usr, Business, Date, Time))20 

That is, the system has a persistent goal relative to R to come to know whether the user has a persistent goal to achieve 

P, relative to Q. When the user says “yes”, the system adopts the persistent goal to make an appointment, which is 

relative to the user’s persistent goal that the system do so (R).  If the system learns that the user no longer wants the 

system to make the appointment, the system can drop its persistent goal and any parts of the plan that depend on it.  

Otherwise, the system will keep that persistent goal and plan to achieve it. 

As a second example, in utterance 21, the system asks what date the user wants the appointment.  This question is 

planned because the system has created a pgoal, relative to its wanting to make an appointment for the user, to know 

the Date such that the user has a pgoal (relative to some other proposition Q) that the system make an appointment on 

that Date.  

pgoal(sys, knowref(sys,Date^pgoal(usr, P, Q),  R), where  

P = done(sys, make_appointment(usr, Business, Date, Time)) 

3.3.4 Intention to do (intend) 

Agent X’s intending to perform action Act relative to formula Q is defined to be a persistent goal to achieve X’s 

eventually having done Act: 

intend(X, Action, Q) =def  pgoal(X,  done(X, Action), Q). 

In other words, X is committed to eventually having done the action Action relative to Q. An intention is thus a 

commitment to act in the future.21 Notice that intentions take (potentially complex) actions as arguments and are 

relativized to other formulas, such as pgoals, other intentions, and beliefs.  If a relativization condition is not believed 

to be true, the agent can drop the intention.  For example, in the sample dialogue at utterance 21, we can see the 

system’s forming the intention to ask a wh-question relative to the persistent goal to knowref, and then executing the 

intention. 

This notion of intention is different than the current (mis)use of the term “intent” in the “intent+slot” dialogue literature 

as it incorporates an internal commitment to act as part of a plan and relative to having other mental states.  “Intent” 

in the dialogue literature is basically taken to refer to an action that the user supposedly wants the system to perform, 

or occasionally, to refer to an ordinary predicate. Here, we treat intend as a modal operator, with a formal logic and 

semantics (see Cohen and Levesque [1]).  

 

18 Cohen and Levesque [1] had the agent’s believing the relativization condition was false. In this system, we weaken this constraint 

somewhat by having the agent not believe the relativization formula is true. 

19 Hereafter we use sys and usr as constant entities (of type agent) to identify the system and the user, respectively. 

20 For ease of readability, we omit the existential quantifiers within the scope of pgoal binding Date and Time here and elsewhere 

in this paper.  

21 Cohen and Levesque [1] also had the agent believing it was about to do the action.  We omit this condition for simplicity. 
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3.4 Defaults 

Eva operates with a collection of defaults [79], many of which are targeted at its user model and domain facts.  The 

general default schema is, using Prolog operators ‘:-‘ (is true if’), ‘\= ‘(not unifiable) and ‘\+ ‘(not provable):  

istrue(P)  :-  default(P), P \= ~Q,  \+ ~P. 

That is, P is true if P is stated as a default predicate, P is not the negation of a formula Q, and it cannot be proven that 

~P. If P is a default formula, but its negation can be proven, then istrue(P) does not hold.  These are among the normal 

defaults (Reiter, 1980).   

For example, we might have the following default schemas: 

default(driveable(car_of(usr))) — by default, the user’s car is driveable. 

default(knowif(usr, damaged(mobile_phone(usr)))) — by default, the user knows whether the user’s phone is 

damaged. 

default(knowif(usr, pgoal(usr, Pred, Q))) — by default, the user knows whether the user has a pgoal that Pred be true.  

default(knowif(usr, knowref(usr, Var^Pred))) — by default, the user knows whether the user knows the referent of 

Var^Pred.   

The previous two defaults schemas have schematic variables for the interesting formulas and variables (Pred and Var, 

and of course the relativizer Q).  When those are provided with actual formulas and variables, a specific default would 

be queried.     

3.5 Action Expressions and their Description 

Of particular importance to a planning system is the representation of actions. In this section, we provide action 

expressions that incorporate both primitive and composite actions. Using an extended STRIPS-like description of 

actions, primitive actions are described using an action signature, which consists of the action name and a list of 

arguments, where each argument is of the form Role:Value#Type.22 The only requirement for an action is that there 

be an agent role and filler of type agent (which is a concept in the ontology).  Figure 3 shows an English gloss of the 

description of the action of a vaccine center’s vaccinating a patient at a location, date and time.  Composite action 

expressions will be detailed below. We will use the term “action” to mean both primitive and composite action 

expressions.  

Action descriptions state, in addition to the signature, the action’s Precondition, Effect, Applicability Condition, and 

Constraint, which are well-formed formulas.  The Precondition is that the Patient has an appointment at a certain Date 

and Time, and that the Patient is located at location Loc, which the Constraint stipulates to be the location of the 

vaccination center. The Effect states conditions that the agent wants (i.e., has as a pgoal) to be true at the end of the 

action. The Effect stated here is that the Patient is vaccinated by the Center. 

We define four functions that operate over action expressions Action, providing the well-formed formulas P that are 

an action’s precondition, effect, constraint, applicability condition.   

precondition(Action, P) 

effect(Action , E), 

constraint(Action, C), 

applicability_condition(Action, A) 

 

22 For terms in the form Role:Value#Type, the Role can be any atom. We intend the meaning of “role” to be similar to the notion 

of (thematic) role used in the natural language literature, namely as a labeled argument in a predicate or action.  That is different 

from the meaning often found in the planning literature in which multiple agents may play different roles (e.g., pilot vs. wingman).   

Sometimes, one can encode the latter with expressions using roles, fillers, and the types of those fillers, but perhaps not always.  
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Because the action description is just that, a description, rather than a modal operator (as in dynamic logic), the planner 

and reasoner cannot conclude that after an action is performed, the effect E in fact holds, or that it holds conditioned 

on the precondition.  Furthermore, there is no attempt here to prove that after a (potentially complex) action has been 

performed, the complex action expression or plan is a valid way to achieve the effect (cf. [53]).  Rather, as a description 

of an action, the stated effect E is described as the desired or intended effect, which is realized by an agent’s having a 

pgoal to achieve effect E.    

Given a pgoal to achieve P, Eva’s planning subsystem will attempt to find an action expression whose effect E as 

stated in the action description unifies with P.  If P is a complex formula, planning rules will decompose it, and attempt 

to find more primitive actions that achieve the simpler components.  For example, it may decompose effects that are 

conjunctions into individual plans to achieve the conjuncts.  But, as is well-known, this may well be problematic (cf. 

[80]), and thus Eva’s planning is only a heuristic approximation to finding a plan that truly achieves the overall goal 

P.  We will discuss below a special case in which we do in fact engage in such goal decomposition. Still, this limitation 

may not matter for a dialogue system, as we are not attempting to reason in advance about a long sequence of utterances 

during an interactive dialogue.   Rather, the system attempts to take a step towards its goal and react to the inputs it 

receives, much as other BDI architectures do [81]. However, unlike such architectures, Eva engages in backward-

chaining and plan recognition, and reasons about other agents’ mental states.   Moreover, other BDI architectures are 

oriented towards communication among artificial agents using KQML communicative actions, which we have 

criticized elsewhere [82]. Instead, we use a well-founded set of speech acts inspired by natural language 

communication. 

If the agent has the pgoal that a formula E holds, and that formula unifies with the effect of some action expression A, 

it would add a pgoal to perform A (i.e., an intention to do A).  It would then add A’s precondition as a pgoal to the 

plan, if it does not believe the precondition holds.  This backward-chaining may continue via effect-act-precondition 

reasoning. Finally, the Applicability Condition (AC) states formulas that must be true, but cannot be made true by the 

agent.  For example, Figure 3 shows the description of the vaccination action.  The AC here is that the vaccine center 

has the vaccine and the Patient is eligible for the vaccine. If such ACs are believed to be false (vs. not believed to be 

true), the agent believes the action A is impossible to perform.23 Thus, the agent would not create a persistent goal or 

intention to perform action A because this violates the definition of persistent goal.  If the system does not know 

whether the AC holds, it creates a pgoal to knowif(sys,AC) and blocks the intention from further inference.   If it learns 

the AC is false, and the pgoal to do the action has been created, it would remove that pgoal and any pgoals that depend 

on it.  Further discussion can be found in Section 6.  Finally, the system may represent actions hierarchically with 

actions optionally having a Body, which would decompose into a complex action described with the dynamic logic 

operators below. 

Notice that this action expression language is an extension of the hierarchical variants of the Planning Domain 

Definition Language (PDDL) [83] such as HDDL [84]. In particular, we provide descriptions of composite actions 

 

23 We could specialize action definitions such that different agents have different action representations. For example, the vaccine 
center’s representation of the act of vaccinating could have different preconditions, effects, and applicability conditions than the 

user’s representation of that action.  Because the user cannot do anything about the availability of vaccine, it is an applicability 

condition. However, the vaccine center can order more vaccine, so vaccine availability is a normal preconditionthatcan be planned 

by the Center (e.g., by ordering more vaccine).  

Center vaccinates Patient against Disease with Vaccine 

Precondition: Patient has an appointment at Center at Date and Time 

                     Patient is located at Loc at Date and Time 

Constraint:  Center is located at Loc 

Effect: Patient is vaccinated by Center with Vaccine 

Applicability Condition:  Center has Vaccine and Patient is eligible for Vaccine 

 

Figure 3. The action description of a Vaccination Center’s vaccinating a Patient 
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and add preconditions and effects on higher-level actions in addition to the primitives [85].  Also of importance, Eva 

allows action expressions as arguments to other actions, supporting directive and commissive speech acts like 

requesting, recommending, etc. We will see such a speech action definition in Section 5.8. 

As part of the action’s signature, the system keeps track of the agent doing it. The action description action(Agent, 

Action, Constraint) indicates that agent Agent is the agent of the  Action expression such that Constraint holds.  

However, Action itself has an agent role (call its value Agent1). In most cases, the two agents are the same, but they 

need not be.  By allowing for them to be different, we can represent that Agent does something to help or get Agent1 

to perform the Action.  An example might be submitting an insurance claim on behalf of someone else.   Doing actions 

on behalf of (to the benefit of) someone else may require explicit agreement or permission to do it. 

3.5.1 Predicates over Action Expressions 

These predicates allow us to say that an action will be done in the future (do), is being executed (doing), or has 

occurred in the past (done). Unlike in Cohen and Levesque [1], we also provide explicit time arguments for these 

predicates, for which it is simple to provide semantics using the logical tools in Cohen and Levesque [1]:24 

• do(action(Agent, Action, Constraint), Location, Time) — Action  will be done at location Location and Time in 

the future.25   
• done(action(Agent, Action, Constraint), Location, Time) — Action has been done at Location and a past Time. 26  

• doing(action(Agent, Action, Constraint), Location, Time) — Action is ongoing at Location and Time. 

One additional predicate that we adopt that was not in Cohen and Levesque [1] is failed(Action, Reason).  Eva uses 

this predicate when it sends an action invocation request to a backend system (e.g., asking a credit card validation 

system to validate a particular card number).  If the backend system returns a failure, the Reason parameter encodes 

the cause of the failure, such as the card is invalid, overlimit, etc. It can be text sent via the backend or a logical form.   

Eva assumes that a failure means the action is impossible, so it drops the intention to perform it, though it may try to 

find another way to achieve the higher-level goal.  

3.5.2 Complex actions combinators 

We provide complex action expressions with combinators drawn from dynamic logic [86], in addition to a combinator 

for hierarchical decomposition.27 As we develop the action expressions below, the predicates will become more 

realistic.  

Specifically, we have: 

Compound actions: Action expression Example 

Sequential actions:    seq(A, B) seq(find_identification_number(X,P), 

informref(X,Y,Q)) 

Conditional Actions:    condit(P, A) condit(eligible(X),make_appointment(X,B,D,T)) 

Non-deterministic  

Mutually Exclusive Or:  disj(A, B) disj(inform(S,U,P), inform(S,U,~P)) 

 

In addition to the four action description functions discussed above, we now add two predicates for defining 

hierarchical action expressions.  

body(Action, ActionBody) 

 

24 To improve readability, in this paper we sometimes simplify these expressions and use, e.g., done(X, Action) rather than 

done(action(X, Action, Constraint), Location, Time) if the additional arguments are not relevant to the discussion. 

25 Note that do is actually redundant given ◊ and done.  We are not enforcing future and past in the syntax, but in the formal and 

operational semantics.  

26 This is different than the definition of done in Cohen and Levesque [1], which is satisfied immediately before now. 

27 Whereas we use some of the dynamic logic combinators (except iteration), we do not describe actions as a modal logic. That is, 

we do not provide a semantics for “after action A happens, P is true.”    
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in_body(ActionBodyElement, Action) 

The first predicate (body) maps an action into an ActionBody compound action expression.  There may be more than 

one Action that decomposes into the ActionBody, but each Action only has one Body.  The in_body  predicate relates 

an element of an ActionBody with the higher level Action of which it is a part.  It could be one of the sequential actions, 

or a conditional or disjunctive action.  There could be more than one Action that contains ActionBodyElement. The 

predicate in_body looks for any action within a named complex action expression, searching through the entire 

complex action library.   

As an example of action decomposition relationships, we have the following: 

body(informif(S,H,P), disj(inform(S,H,P),inform(S,H,~P))) and in_body(inform(S,H,P), informif(S, H, P)  

This example shows that an informif speech act from S to H that P (i.e., informing whether P is true) can be 

decomposed into the disjunctive act of S’s informing that P or informing that ~P.  The precondition and effect of the 

informif action are determined by the disjunctions of the preconditions and effects of the constituent inform actions 

[30, 39].  Thus, the precondition can be shown to be knowif(S,P).  in_body shows that an inform action is part of the 

body of the informif action.  

We define one more predicate to provide the unbound or unknown variables in the Action. In order to execute any 

Action, the system needs to know what that Action is [73].  Therefore, we define 

unk_oblig_arg(Action, Role:Var#Type) 

to say that Agt does not know the value for one of the obligatory variables (namely, Var, which is the value, of type 

Type, of the given role Role) for an action she intends to execute. That is, 

\+knowref (Agt,Var^intend(Agt, Action, Q)) 

with Var being a free variable in Action.  If Agt does not know the value of the variable, but a value for that variable 

is required for the successful execution of Action, the system will eventually create a pgoal to knowref that value 

which may then lead to planning a question (this process would be repeated for all other unknown obligatory 

arguments of Action).  

4 Reasoning about Mental States and their Combinations  

We now discuss how Eva reasons with the above formulas. There are two meta-interpreters used to reason about 

modal formulas, one for proving (istrue) and one for asserting (→). Modal formulas are proven with istrue invoked 

from a standard Prolog rule ‘:-‘. Non-modal formulas are put into negation normal form (negations only take literals 

as their scope), and are proven using a standard Prolog interpreter. The assertional meta-interpreter → handles 

assertions of modal formulas, whereby instead of asserting the left-hand side (LHS), the right-hand side (RHS) is 

asserted. With it, we ensure that the least embedded formula possible is entered into the database, subject to the logical 

semantics. This also means that the LHS clause would not be found in the database because the  → meta-interpreter 

is rewriting the LHS into the RHS.  Finally, we have a rule operator ‘=>’ for planning and plan recognition rules.  The 

LHS of => is proven using istrue, and the right-hand side is asserted with ‘→’.   

The system is driven by its maintaining the rational balance among mental states.  Thus, it is able to reason about one 

agent’s goals to get an agent (itself or another agent) to believe or come to know whether a formula is true, to intend 

to perform an action, or come to know the referent of a description.  The semantics of the individual modalities is 

expressed in the possible worlds framework, which describes the meanings of the combinations of these formulas and 

the implications of their becoming true.   Moreover, the theory of intention in Cohen and Levesque [1] is able to 

provide a semantics for the internal commitments that the intender takes on, and the conditions under which those 

commitments can be given up.  The system is built to provide an operational semantics that accords with the logical 

ones through its inference rules and BDI architecture.  

In addition to the axioms for belief and goal found in Section 3.1, we give below examples of inference and rewriting 

rules that the system employs with respect to cross-modal inference. These rules together are an attempt to maintain 

the least embedded formulae possible, subject to the semantics of bel, goal/pgoal, intend, knowif, and knowref. 

Sometimes the same formula will be in both forward and backward reasoning rules below because there may be cases 
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where a condition needs to be proved, even though the system has not yet tried to assert it and thus create the more 

compact version.   

4.1 Meta-logical Interpreter:  Proving 

Proving via istrue: If trying to prove the left side, prove the right side (as in Prolog)28  

• istrue(bel(X, bel(X,P)))  :- istrue(bel(X, P)) 

• istrue (bel(X, P ∧ Q))  :- istrue(bel(X,P)), istrue(bel(X,Q)) 

• istrue(bel(X, pgoal(X,P))) :- istrue(pgoal(X,P)) 

• istrue(bel(X, knowref(X, Var^Pred)))  :-  istrue( knowref(X, Var^Pred))) 

• istrue(bel(X, knowref(X, Var^(Pred, Cond))))  :-  istrue(knowref(X, Var^Pred))), istrue(Cond) 

• istrue(bel(X, exists(Var^Pred))) :- istrue(knowref(X, Var^Pred))   

• istrue(knowif(X, P)) :- istrue(bel(X, P)) ∨ istrue(bel(X, ~P)) 

• istrue(bel(X, P)) :- istrue(bel(X, (P :- Q))), istrue(bel(X,Q))   This models the system’s being able to reason about 

another agent’s belief reasoning.     Here, the agent (X) has a belief about a Horn clause rule ‘P :- Q’.     There 

would be assertions in the database about the agent’s domain specific Horn clause rules.29  It approximates30 

with Horn clauses the material implication in axiom K:  

|= bel(X,P ⊃ Q) ⊃ (bel(X,P) ⊃ bel(X,Q)) 

There are also a number of other rules of no particular interest (e.g., meta-interpreting conjunctions and disjunctions). 

4.1.1  Proving done as applied to complex action expressions   

There are several predications that take action expressions as an argument, namely do, done and doing. These 

predicates take a list of arguments, the first of which specifies the agent, then the action, and finally the location and 

time. We take do and done to be satisfied at a future/prior time, respectively (as they take a specific time as an 

argument).  In addition to taking primitive actions as arguments, these predicates are defined over complex action 

expressions, such as conditional, sequential, and disjunctive action expressions. For example, a disjunctive action 

expression has been done at some location and time if either of its disjuncts has been done at that location and time. 

istrue(done(action(Agt, disj(Act1, Act2), Constr), Loc, Time))   :-  

 istrue(done(Agt, Act, Constr), Loc, Time)  ∨  istrue(done(Agt, Act2, Constr), Loc, Time)) . 

Currently, we have found it sufficient to say that a conditional action condit(P,Act) has been done if Act has been done 

and the predicate P is true.31   

istrue(done(action(Agt, condit(Pred, Act), Constr), Loc, Time))  :-   

 istrue(Pred) ∧  istrue(done(action(Agt, Act, Constr), Loc, Time)). 

 

28  Comma ‘,’ is used both to separate arguments of terms, and also as a meta-language conjunction. So, if P → Q, R, if the forward 

meta-interpreter is asked to assert P, it will assert Q and will assert R, but is not asserting the object language conjunction of and(Q, 

R).  

29 This rule also applies to the system’s beliefs, which eventually cashes out istrue into the system’s Prolog belief database.  

However, for efficiency, we would insert a predication that X is not equal to system. 

30 For example, material implication allows contrapositive reasoning, but Horn clause reasoning does not. 

31 To be more precise with respect to done, Eva could check if the condition P held at the time the action was performed (Time) 

rather than at the present time. To do the former, we would need a time argument for every predicate (fluent), and to know when 

the interval of its being true terminates (or has not yet terminated).    The classic way to do this is with a holds(Pred,Timeinterval) 

predicate.  This would be easy to adopt.  
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We will say a sequential action of seq(Act1,Act2) has been done if Act1 has been done and Act2 has been done 

afterwards in a circumstance in which Act1 has been done. 

istrue(done(action(Agt, seq(Act1, Act2), Constr), Loc, Time))   :-   

 istrue(done(action(Agt, Act1, Constr), Loc1, Time1)) ,   

istrue(done(action(Agt, condit(done(action(Agt, Act1, Constr), Loc1, Time1), Act2), Constr), Loc, Time)). 

The doing predicate applies to actions that have a hierarchical decomposition, such that once the higher-level action 

has been decomposed into its body, and the system is executing one element of the body, then the system asserts that 

it is doing the higher-level action. If the system has done the last element of the body, then, for the higher-level action 

doing is retracted and done is asserted.  

We currently do not reason with the full linear temporal logic of Cohen and Levesque [1]; see Gutierrez et al. [87] for 

an example of how to do that in a multi-agent context.  

4.2 Meta-logical Interpreter:  Asserting as Rewriting 

The meta-logical interpreter uses rules of the form (LHS → RHS) to infer that, whenever it is supposed to assert the 

left-hand side (LHS), instead it should assert the right side (RHS).  Importantly, these are rewriting rules, not inference 

rules, in that LHS is not asserted to be true.  In the rules below we will use the expression ‘and’ to mean that what 

follows it is a constraint. That is, when the agent is trying to assert the first literal, if the formula following ‘and’ is 

true, then the the literal is rewritten with the right-hand side. 

• bel(X, bel(X,P)) →  bel(X, P) 

• bel(X, P ∧ Q) → bel(X,P), bel(X,Q) 

• bel(X, knowref(X, Var^Pred))  → knowref(X, Var^Pred)) 

• knowref(X, Var^bel(X, Pred)) → knowref(X, Var^Pred) 

• knowref(X, Var^Pred)) and Var is a constant  → bel(X, Pred) 

• pgoal(X, P ∧ Q, R) → pgoal(X, P, R),  pgoal(X, Q, R)32 

• pgoal(X, pgoal(X, P, Q), Q) → pgoal(X, P, Q)33 

• pgoal(X, intend(X, A, Q), Q) →  intend(X, A, Q), where A is a (potentially complex) action.   If agent X wants to 

intend to do action A, then the agent in fact intends to do A.  

• pgoal(X, knowref(X, Var^Pred), Q) and Var is a constant → pgoal(X, bel(X, Pred), Q) 

During reasoning, Var can become bound to a constant.  Because knowref is defined to existentially quantify Var 

into the agent’s beliefs, the possible worlds semantics shows that the agent believes Pred is true of that constant.  

• bel(X, pgoal(X, P, Q)) →  pgoal(X,P,Q) — If the system tries to assert that the agent believes it has a goal, then 

assert that it does have the goal.  

Finally, a word about soundness and completeness. We make no claims that the reasoning system is complete, however 

relative to the approximations we have made, we do believe it is sound.34 Interestingly, there is a propositional variant 

 

32 CL 90 require that the pgoals P and Q be true at the same time, but we ignore that here. 

33 Here is an example in which the left-hand side (LHS) and the right-hand side (RHS) cannot co-exist in the database because an 

agent’s having a pgoal means that the agent believes the content is false, which contradicts the RHS.  This rewriting rule essentially 

keeps the database consistent if some reasoning step attempted to create the LHS.  

34 Researchers have fretted about the complexity of reasoning with such formulas and have suggested using programmatic BDI 

architectures to avoid the problems [88]. However, the restrictions inherent in such systems would not support the kinds of dialogues 
we target.  On the other hand, many advocate end-to-end trained neural network-based dialogue systems (e.g., [46]). Apart from 

simple slot-filling, it is arguable whether dialogue systems based on neural networks or large-scale language models can engage in 

reasoning, much less modal Horn-clause reasoning.   Furthermore, large-scale language models are known to not tell the truth, so 

cannot be said to engage in sound reasoning.  
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of the logic in Cohen and Levesque [1], from which we draw, that has been shown to be sound and complete [89].  

Rao and Georgeff [90] also proposed sound and complete branching-time multi-modal propositional logics for belief, 

desire, and intention.  Their intention operator corresponds to Cohen and Levesque’s goal operator, and they have no 

analogue to persistent goal or intend as we use them here.  In comparison to both approaches [89, 90], however, we 

cannot use a propositional logic for our system, since it would make it impossible to reason about knowref, which is 

so essential to task-oriented dialogue.  Likewise, we need to have arguments to actions that may be existentially 

quantified (“I intend that someone tow the car to the repair shop”).  Another major difference with the aforementioned 

logics [89, 90] is that they do not consider intentions to perform actions, but only to make formulas true.  For Eva, its 

intentions to perform (possibly complex) actions is key to its functioning.35  

4.3 Equality and Reference Resolution 

In the course of planning, the system generates equalities between variables appearing in different goals.   Unlike 

graph representations that can accommodate multiple pointers to the same node, sentential reasoning requires that 

variables appearing in different formulas be explicitly stated as being equal36.  For example, we record that the covid 

vaccination center that the user (u1) wants to go to is the same as the covid vaccination center at which the user wants 

to be vaccinated.  Likewise, the time that the user intends to be vaccinated is the same as the time at which the user 

wants to have an appointment.   

In the sample dialogue, at some point the system reasons that ‘CVS’ is a covid vaccination center that satisfies the 

user’s goals, which then enables all of equalities to be resolved if needed.  

In general, entities that are equal should be intersubstitutable in formulas.  However, equality reasoning is prevented 

from crossing modal operators.  For example, Frege's [91] famous examples “I believe that the morning star = evening 

star = Venus”, but “John does not know that the morning star = the evening star” need to be jointly satisfiable.   I 

cannot use my beliefs of equality to reason about what John believes.   However, the system can reason with “the X 

that John believes to be the morning star = the Y that Mary believes is the evening star” (quantifying X and Y into 

their respective beliefs).  Thus, because the variables are not in the scope of the agents’ beliefs (or in other cases, 

pgoals), the system should be able to reason about X and Y, but not attribute those beliefs to John or Mary.  Eva 

reasons about equality among variables by maintaining equivalence classes of equalities. Figure 4 shows an example 

of such equivalence classes created after the first sentence of the example shown in Section 1.1.   Notice that these are 

all quantified-in variables, but the system does not attribute these equalities to the user’s beliefs because the semantics 

of quantified-in goals is that the value is the same in all the agent’s goal worlds, but not necessarily in all the agent’s 

belief worlds.    

This same equality reasoning mechanism enables the system to represent and resolve co-referential and anaphoric 

references. Because the equality relationship is declarative, if an ambiguous reference is detected, the system can 

generate a request to the user to disambiguate the intended referent (See Section 5 for the definitions of speech acts): 

 intend(sys, request(sys, usr, disj(inform(usr, sys, (<referring expression> = ‘a’), 

inform(usr, sys, (<referring expression> = ‘b’))), Q)    

Of course, how the system finds candidates for coreference or resolves them is a topic of much research (e.g., [92–
94]), but not one we have concentrated on to date. 

5 Speech Acts 

In the study of semantics, philosophers and linguists once only analyzed utterances as being true or false.  But in his 

seminal book “How to do things with words,” the philosopher Austin [27] upended this approach by arguing that 

utterances are actions that change the world.  Dubbed illocutionary acts or “speech acts”, this radical shift in thinking 

began the study of linguistic pragmatics.  John Searle ([76], and in subsequent books) provides a detailed analysis of 

 

35 One could perhaps use the encoding in Cohen and Levesque [1] of the agent X’s intention to perform an action as a persistent 

goal to make it the case that eventually the action has been done by X (believing that is what it was about to do), but reasoning with 

the defined concept (intend) is easier for building the system. 

36 Prolog forces this representation as it generates new variables for any formula that is asserted into the database. 
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many different types of speech acts, at the level of philosophical argumentation.  Based in part on some initial analyses 

of Bruce [10], the plan-based theory of speech acts [8, 14, 52] argued that people plan their speech acts to affect their 

listener’s mental and social states, and showed how speech acts could be modeled as operators in a planning system.  

Thus, a system can likewise plan speech acts to affect its listener’s mental states, and reason about the effects that its 

listener’s speech acts were intended to have on its own mental states. Planning and plan recognition became essential 

to such pragmatic analyses of language in context because speech acts could then be incorporated into an agent’s task-

related plans when the agent determines that it needs to know/believe something, or needs to get the user to intend to 

perform an action.  

Given the logic we have provided, especially the tools for describing actions, below are some of the speech acts 

implemented to date.  Note that speech act definitions are domain independent.    

5.1 inform 

The first action expression that we will consider is that of an inform by a Speaker to a Listener that formula Pred is 

true.  The precondition for this action is that the Speaker believes what she is saying.  The intended effect is stated as 

the Listener’s believing that Pred holds. Recall that we said the listed effect of this action description does not become 

true as a result of performing the action.  Rather, the Listener comes to believe that the Speaker had a persistent goal 

that the effect holds.  In the descriptions of the speech acts we will ignore the constraint parameter and trivial 

applicability conditions.37  

inform(Speaker, Listener, Pred) 

precondition: bel(Speaker,Pred), 

effect: bel(Listener,Pred) 

 

37 Cohen and Levesque [7] and Perrault [22] gave differing accounts of the conditions under which even these effects do not hold.  

Cohen and Levesque analyzed a notion of sincerity, whereas Perrault described the effects in terms of default logic.  For purposes 

of this paper, we only need to state that the Listener’s believes the speaker wanted to achieve the stated effect.  

equivalence class 1 

[the X#covid_vaccination_center such that U wants to go from some place to a covid vaccination center] 

[the X#covid_vaccination_center such that U intends to be vaccinated for covid at a covid vaccination 

center] 

[the X#covid_vaccination_center such that U may want someone to vaccinate U for covid at a covid 

vaccination center] 

equivalence class 2 

[the X#time such that U wants someone to vaccinate U for covid] 

[the Y#time such that U wants to go from some place to a covid vaccination center] 

[the X#time such that U intends to be vaccinated for covid at a covid vaccination center] 

[the Y#time such that U wants u1 to have an appointment at a covid vaccination center] 

equivalence class 3 

[the X#date such that U wants U to have an appointment at a covid vaccination center] 

[the X#date such that U intends to be vaccinated for covid at a covid vaccination center] 

  

equivalence class: 4 
 

Figure 4. Equivalence classes of typed variables (of the form X#Type). U is the user. 
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5.2 assert 

Assertions are different from informs in that the intended effect is to get the listener to believe that the speaker believes 

the propositional content, whereas the intended effect of an inform is that the speaker comes to believe the 

propositional content.  Thus, we have: 

assert(Speaker, Listener, Pred) 

precondition: bel(Speaker,Pred), 

effect: bel(Listener, bel(Speaker, Pred)) 

5.3 informref 

An informref is a speech act whose intended effect is that the listener know what the value of the variable Var is such 

that Pred is true of it (Var must be free in Pred).   For example, when the user says “Monday” in response the wh-

question “when do you want to eat?”, the intended effect is that the listener come to know that the referent of “the 

date the user wants to eat” is Monday.  The precondition is that the speaker knows what the value of Var is such that 

Pred.  

informref(Speaker, Listener, Var^Pred),  

precondition: knowref(Speaker, Var^Pred), 

effect: knowref(Listener, Var^Pred) 

5.4 Informing whether 

The informif(S, L, P) speech action can be defined as a disjunctive action [30]: 

informif(S, L, P)    disj(inform(S, L, P) , inform(S, L, ~P)) 

5.5 assertref 

assertref is similar to informref in that the intended effect of the speech act is that the listener come to know the 

referent of the variable such that the speaker believes Pred is true of it. assertref can be used to find out what the 

speaker believes, even if the speaker is not trying to convince the listener.   For example, teacher-student questions or 

verification questions employ assertref.  

assertref(Speaker, Listener, Var^Pred), 

precondition: knowref(Speaker, Var^Pred), 

effect: knowref(Listener, Var^bel(Speaker,Pred)) 

Note that assertref can be defined in terms of informref as: 

assertref(S, L,V^P)   informref(S,L,V^bel(S,P)) 

5.6 Wh-Questions 

A speaker asks a wh-question to Listener about the referent of Var such that Pred is true (as usual, Var must be free 

in Pred): 38 

 

38 The wh-question can be decomposed into a Request to do an Informref speech act followed by an Informref.  The freedom we 
have to define such complex speech acts is discussed in Cohen and Levesque [7]. At times, Eva needs to be able reason with these 

speech acts individually, e.g., when it is is planning a third-party speech act such as “Ask Bob to tell me the time he wants the 

appointment” [8]. The wh-question action definition assumes the listener is the same as the agent who will tell the speaker the 

answer, but having the individual speech acts means the system can plan them directed toward different agents.  
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wh-q(Speaker, Listener, Var^Pred)  

precondition: knowref(Listener, Var^Pred)    

effect: knowref(Speaker, Var^Pred) 

Recall that we do not claim the Effect of a speech act becomes true in virtue of the act’s being performed.  Because 

these are planning operators, the Effect becomes a pgoal of the planning agent. Conversely, on observing an agent 

performing an action, including a speech act, the observer comes to believe the planning agent had the Effect as a 

pgoal.39 So, on hearing a wh-question, the listener comes to believe that the speaker has a pgoal that the speaker come 

to know the referent of the description.   

During backward-chaining, the planner may unify the content of a goal formula with the Effect of an action and choose 

to consider that action as a means to achieve the goal.  However, the matching of the Effect may not provide a binding 

for the Listener. If the Listener is not specified, evaluating the Precondition may enable it to determine who knows 

the answer and ask that agent the wh-question.  

5.7 Yes-No Questions 

A yes-no question is described as: 

ynq(Speaker, Listener, Pred) 

precondition: knowif(Listener, Pred), 

effect: knowif(Speaker, Pred) 

Thus, if the system has the pgoal to achieve a knowif formula, it can adopt the pgoal to perform a ynq directed at 

someone whom it believes knows whether Pred is true.   A yes-no question from speaker S to listener L whether 

predicate P is true can be decomposed as a sequence of the speaker’s requesting that L do an informif action, followed 

by the informif action.  That is: 

ynq(S, L, P)   seq(request(S, L, informif(L, S, P)),  informif(L, S, P)) 

5.8 Requests 

Requests are a paradigmatic example of a larger class of speech actions, the directives [76] that also includes 

commands, recommendations, suggestions, etc.  The intended effect of the request is that the listener form the intention 

to do the requested action. From this class, Eva currently uses requests and recommendations, which differ in terms 

of whether the action being requested/recommended benefits the speaker or the listener, respectively.  Notice that 

some of the parameters must be computed based on the embedded Act.  

request(Speaker, Listener, Act) 

constraint:  bel(Speaker, Cond) 

precondition: bel(Speaker, Pre),                        

effect: intend(Listener,do(action(Listener, Act, Cond),Loc, Time), Q) 

where Pre and Cond are, respectively, the precondition and the constraint of the requested Act, which benefits Speaker: 

precondition(Act, Pre),   

constraint(Act, Cond), 

 

39 The speech act literature, and works of ours [7] and colleagues [22] was concerned with precisely which formula became true 

after the speech action was executed.  Notwithstanding our remarks above about the Effect not holding, we are having Eva assert 
that (1) bel(Listener, pgoal(Speaker, Effect)) become true.  However, this might not be true if the speaker was found to be insincere 

or deceptive.  Apart from reasoning about trust directly [7], we can also have Eva assert that default(bel(Listener, pgoal(Speaker, 

Effect))).  That means that if Eva comes to believe that formula (1) is false, the default stipulation will block the conclusion that 

Listener in fact believes Speaker wanted the Effect.  However, further detail is beyond the scope of this paper.  
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benefits(Act,Speaker).                

5.9 Verification Questions 

A number of application scenarios require that a user be verified by answering questions for which the system already 

has an answer in its database.  The system’s goal here is not for the system to come to know the answer, but for the 

system to come to know what the user thinks is the answer. This can be accomplished via the assertref action.  Thus, 

in planning the verification question, the system requests this assertref action.40  Notice that the effect of the assertref 

involves an existential quantifier whose scope is the Listener’s belief of the Speaker’s belief. We leave as an exercise 

for the reader to derive the preconditions and effects of the verification question from the preconditions and effects of 

the constituent actions. 

verifyref(Speaker, Listener, Var^Pred)   

seq(request(Speaker, Listener, assertref(Listener, Speaker, Var^Pred)), 

       assertref(Listener, Speaker, Var^Pred) ) 

6 Collaborative Planning 

As discussed in Section 1, collaboration is so essential to society that we teach our children to be collaborative at a 

very early age [2]. However, present day conversational systems generally do not know how to be helpful or 

collaborate, stemming from their inability to infer and respond to the intention that motivated the conversant’s 

utterance. To overcome this failing, we have built a collaborative planning-based system designed to assist its 

conversant(s) in achieving his/her goals. As previously mentioned, the approach dates back to work done at Bolt 

Beranek and Newman [10–12], at the University of Toronto [9, 13, 14], and at the University of Rochester (e.g., [15–

19]). Such systems attempt to infer their conversants’ plan that resulted in the communication, and then to ensure that 

the plans succeed. Indeed, as noted in Section 1, a central feature of our approach is that the system will attempt to 

infer as much of the user’s plan as it can, will try to identify obstacles to its success, and plan to overcome those 

obstacles in order to help the user achieve his/her higher-level goals. Thus, plan recognition and planning are essential 

to Eva’s architecture and processing. Below we provide a description of Eva’s collaborative planning and plan 

recognition. 

6.1 Planning Rules 

Rather than representing a plan as a pure graph structure of actions, Eva’s plans consist of a web of interdependent 

logical forms describing mental states, notably beliefs, persistent goals and intended actions (cf. [37]). Based on the 

epistemic planning approach first described in [8, 9, 13, 31, 52] and recast in the logic and speech act theory provided 

in Cohen & Levesque [1, 7], Eva’s planning and plan recognition make extensive use of reasoning, as it derives and 

attributes new mental states of the user. The system generalizes the original plan-based dialogue research program by 

planning with multiple declaratively-specified mental states, including persistent goal, intention, belief, knowif, 

knowref.   

The system has a hybrid planning algorithm [95] as it both engages in backward chaining from desired effect to one 

or more chosen actions that could achieve those effects, and decomposes hierarchically defined actions into more 

primitive ones as a hierarchical task network planner does [80, 96–98]. Others have described plan recognition in 

terms of “inverse planning” [99, 100]. Our planning algorithm is similar in some respects to that used by BDI systems 

in that the purpose is to determine the next action to perform, rather than to plan sequences of actions, though it can 

do that.  One would not expect a dialogue planning system to engage in advance planning of back-and-forth 

interactions as in a game, unless the world were very constrained. We also are not interested in finding a machine-

learned “optimal” response, given the rather arbitrary numerical weights/probabilities and the vast space of potential 

logical forms (not to mention natural language utterances) that a learning system driven by a user simulator [101] 

might generate.  Rather, we want the system to do something appropriate and reasonable, as long as it has the means 

to recover from errors, respond to users’ clarification questions, etc.  Because the system interleaves planning, 

 

40 A similar assertif action is used when the system wants to verify that the user knows whether a predicate is true.  
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execution and so-called “execution-monitoring” that involves observing the user’s actions in response to the system’s 

(i.e., to have a dialogue), there are many opportunities to revector a dialogue towards success.    

Eva’s planning involves the following rules, for which we use ‘=>’ to separate antecedent and consequent.  The 

formulas in the antecedent would be proven to be true via the meta-interpreter’s istrue rules).  The result of applying 

a planning rule is to assert the consequent.   These assertions can be rewritten by the  → rules.  

Effect-Action:  If an agent Agt has pgoal to achieve a proposition P, and Agt can find an action Act that achieves P as 

an effect, then the planner creates a pgoal to do the action relative to the pgoal to bring about P.  

(P1) pgoal(Agt, P, Q)  and effect(Agt, Act, P) => pgoal(Agt, done(Agt, Act),  pgoal(Agt, P, Q)) 

Given the definitions of intention provided earlier, the formula on the right side is the expansion of the intention to do 

Act: 

intend(Agt, Act, pgoal(Agt, P, Q)) 

We will use intend formulas wherever possible. 

If more than one action can be found, the planner creates a disjunctive action (see also Sadek et al., 1997).   

Act-Applicability Condition:  If the planning agent believes an Act’s applicability condition, AC, is false, the action 

is impossible, the intention is marked as impossible. During the main loop of the system, intentions that are impossible 

are retracted, as are any persistent goal or intentions that are relativized to it.  

We adopt the following rule for applicability conditions:  given action A, applicability condition AC, agent Agt, and a 

relativizing condition, Q: 

(P2) applicability_condition(A, AC)  and  bel(Agt, ~AC) =>  

bel(Agt, impossible(done(Agt, A))),  ~intend(Agt, A, Q) 

Recall that for a given action, the applicability conditions cannot be made true. The above rule means that, if AC is an 

applicability condition to do action A, and the agent believes it is false, the agent itself cannot possibly do anything to 

make AC true, so then the agent would drop (or not adopt) an intention to do A. I 

 If the planning agent Agt does not know whether AC holds, the following rule is used to create a pgoal to knowif that 

AC is true, relative to the intention to do the Act.  

(P3) intend(Agt, Act, Q) and applicability_condition(Act, AC) and  \+knowif(Agt, AC) => 

pgoal(Agt, knowif (Agt, AC), intend(Agt, Act, Q)) and blocked(intend(Agt, Act, Q))  

The created pgoal to knowif potentially leads the agent to ask a question.  In addition, the persistent goal/intention to 

perform the Act is blocked, such that no more expansion of any plans passing through that action can be accomplished 

until the system knows whether the AC holds.  Considering the system as agent, if the system comes to believe AC 

holds, the relevant blocked persistent goal/intention becomes unblocked and planning to achieve that pgoal/intention 

continues.  Hereafter, we suppress the condition on all rules that the intention and/or persistent goal to do an action is 

not blocked.  

Act-Precondition:  In backward-chaining, if the planner determines that a precondition (PC) to an intended Act is 

believed to be false, the planner creates a persistent goal to achieve PC, relative to the intention to perform Act.  

(P4) intend(Agt, Act, Q) and precondition(Act, PC), bel(Agt, ~PC) => pgoal(Agt, PC, intend(Agt, Act, Q)) 

If the agent does not know whether or not PC holds, then it adopts the pgoal to knowif PC is true. 

(P5) intend(Agt, Act, Q) and precondition(Act, PC) and ~bel(Agt, PC) => 

pgoal(Agt, knowif(Agt, PC), intend(Agt, Act, Q)) 

Act-Body:  This rule enables the planner to engage in hierarchical planning. When the planner creates an intention to 

perform an Act that has a decomposition (Body), it creates an intention to perform Body relative to the higher-level 
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intention to perform Act.  The intention to perform Body could then lead to planning with conditionals, disjunctions, 

and sequences.  

(P6) intend(Agt, Act, Q) and  body(Act, Body) =>  intend(Agt, Body, intend(Agt, Act, Q)) 

As discussed in Section 3.5.2, various expansions and relativizations are created between the Body action and the 

higher-level action. Note that the preconditions and effects of the higher-level action are derived from the structure of 

the Body action. In particular, the precondition of the higher-level act is the precondition of the first act in the 

decomposition.  The effect of the higher-level act depends on the decomposition.  For instance, the effect of a sequence 

is the effect of the last act in the sequence.  The effects of the intermediate acts may or may not persist until the end, 

so we do not attempt to derive their status.  Other rules are provided by the forward meta-interpreter which handles 

the assertion of intending complex actions in terms of intending its decomposed constituents.   

Act-Knowref: If an agent Agt has an intention to do an action Act (relative to Q), the agent has a pgoal to knowref the 

value for each of the obligatory arguments of that action relative to the intention that it does now know.  If it does not 

know what the values are, it creates for each Var, a persistent goal to know what the Var is such that the agent intends 

to do the Act for which that Var is a parameter. 

(P7) intend(Agt, Act, Q)  and  unk_oblig_arg(Act, Role:Var#Type) => 

pgoal(Agt, knowref(Agt, Var^intend(Agt, Act, Q)), intend(Agt, Act, Q)) 

The creation of such goals may lead to planning and executing wh-questions (so-called “slot-filling” questions) by the 

agent.   Conversely, because of helpful goal adoption (Section 6.3.1) after the user asks a question indicating that the 

user has a pgoal to know the value of the variable in a predicate,  the system may come to have a pgoal that the user 

know what that value is and may infer an action that the user wants to perform.  Such a goal could lead the system to 

tell the user what s/he needs to know in order to do an inferred action, even if not explicitly asked.   Also, if the user 

changes his/her mind about intending Act, the system can drop the pgoal to find out the values of Act’s parameters.  

Intended complex actions: 

If an agent intends to do a conditional action and does not know whether the condition holds, the agent forms a 

persistent goal to come to know whether the condition holds, relative to the intention to do the conditional action.  

(P8) intend(X, condit(P,A)) and  \+knowif(X,P) => pgoal(X, knowif(X,P), intend(X, condit(P,A))) 

If an agent intends to do a conditional action, and believes the condition is true, then the agent intends to do the action 

relative to the intention to do the conditional action.  

(P9) intend(X, condit(P,A), Q) and  bel(X,P)) =>  intend(X, A, intend(X, condit(P,A), Q))41 

Intending a mutually exclusive disjunctive action disj(A,B) results in two intentions: an  intention to do action A 

provided action B has not been done, and similarly for B.  So, whichever gets done first, will cause the other intention 

to be removed because the relativized intention for the disjunctive act has been achieved.  

(P10) intend(X, disj(A,B), Q) =>  intend(X, condit(~done(X,B), A), intend(X, disj(A,B), Q))   and 

intend(X, condit(~done(X,A), B),  intend(X, disj(A,B), Q)) 

An agent X’s intending to do the sequential action seq(A,B) results in two intentions: first in the agent X’s intending 

to do the first action A, relative to the intention to do the sequence, and in X’s intending to do the second action when 

done(X,A) is true, again relative to the intention to do the sequence.42  

 

41 Note relativization of the consequent intention. 

42 In Cohen and Levesque [1], done meant the action has just finished.  Because the Eva system maintains the time any action is 

done, it can predicate whether done is satisfied to whatever temporal degree it is needed. Indeed, it is generally unclear under what 

time constraint the subsequent action in any arbitrary sequence must be performed relative to the prior one. For example, if the first 
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(P11) intend(X, seq(A,B), Q) => intend(X, A, intend(X, seq(A,B), Q))   and  

intend(X, condit(done(X,A),B),  intend(X,seq(A,B), Q)) 

6.2 Plan Recognition Rules 

The system engages in plan recognition by expanding the user’s plan, expressed in terms of appropriately relativized 

persistent goals and intentions, according to various rules similar to those of Allen and Perrault [9]. 

Act-Effect: If the system has attributed to the user Agt a persistent goal/intention to perform an action Act, then assert 

that Agt has a persistent goal to achieve the effect E of Act relative to the intention to do Act.   

(P12) intend(Agt, Act, Q) and  effect(Agt, Act, E)  =>  pgoal(Agt, E, intend(Agt, Act, Q)) 

Precondition-Act: If the system has attributed to Agt a pgoal(Agt, P, Q) and P  is the precondition to an act Act, then 

attribute to Agt the intention to do Act relative to that pgoal.  

(P13) pgoal(Agt, P, Q)  and  precondition(Agt, Act, P) => intend(Agt, Act,  pgoal(Agt, P, Q)) 

Note that P could enable multiple acts, e.g., A1 and A2.  The system would then attribute to Agt the intention: 

intend(Agt,  disj(A1, A2), pgoal(Agt, P, Q)).   

Know-if-exists:  If S has attributed to Agt the pgoal to know whether or not there is an X such that Pred, where Pred 

is a schematic predicate variable that has a free variable Var, then attribute to Agt the pgoal to know what “the P” is.  

Formally,   

(P14) pgoal(Agt, knowif(Agt, ꓱX^Pred ) Q) => pgoal(Agt, knowref(Agt, X^Pred) , R)  and 

Q = pgoal(U,knowref(Agt, X^Pred) , R) 

For example, if Agt wants to know whether there is a nearby vaccine center, then attribute to Agt the pgoal to know 

the referent of “nearby vaccine center”.  This would enable the Val-Action inference below.  

Val-Action:   If Agt has a pgoal(Agt, knowref(Agt, X#Type^Pred)), and X#Type is a required argument in some action 

Act and Act has a constraint predicate C, then create a persistent goal to have done Act additionally constrained by 

Pred. 

(P15) pgoal(Agt, knowref(Agt, X#Type^Pred)) and unk_oblig_arg(Agt, Act, Role:X#Type) => 

pgoal(Agt, knowref(Agt, X#Type^pgoal(Agt, and(done(Agt, Act), constraint(Agt, Act, Pred)), Q)) 

For example, if Agt wants to know the location of the nearest vaccination center, then Agt may want to go to that 

location.43  

Knowif-Action:   If pgoal(Agt, knowif(Agt,P), Q), and P is an applicability condition for an Act, then attribute to the 

Agt the pgoal to have done that Act (i.e., the intention to do Act).  Notice that because this is a plan recognition rule, 

the relativization argument of the pgoal to knowif is the intention to perform the Act. Formally: 

(P16) pgoal(Agt, knowif(Agt,AC), Q) and applicability_condition(Act, AC) => intend(Agt, Act, R) and 

Q = intend(Agt, Act, R) 

 

action was a year ago, is doing the second action now satisfactory?  Of course, that all depends on the actions and the agent’s 

intentions. 

43 Of course, there may be many actions for which the variable X#Type is an argument.  Rather than create a disjunction of all of 

them, we may assert that Agt wants to do some action for which the typed variable is an argument.  Subsequent reasoning might 

then infer what is the best action to choose.  
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Normal-Activity:  If Agt has a pgoal to be located at a place P, then ascribe to Agt the pgoal to do the normal activity 

one does at location P.  For example, if Agt has a pgoal to be located at a movie theater, then attribute to Agt the pgoal 

to watch a movie.44  

(P17) pgoal(Agt, location(Agt, Place), Q) and  normal_activity(Place, Act) => 

intend(Agt, Act, pgoal(Agt, location(Agt, Place), Q)) 

Negative State: If Agt is in a negative state (of which there are a list of domain dependent types), infer that the agent 

wants to be in the corresponding positive state.  For example, if the agent has lost her phone, infer that the agent wants 

to have found her phone.  If the agent’s phone has been damaged, infer that Agt wants her phone to be repaired. 

(P18) bel(Agt, state_of(Agt, NegState)) and  bel(Agt, positive_state(NegState, PosState)) => 

pgoal(Agt,  state_of(Agt, PosState), Q) 

Finally, if the probability of an inferred intention of the user is below a modifiable threshold (which could be user-

dependent), the system generates a goal to know whether the user is wanting/intending that intention.  We see this in 

utterance 3 of the Sample Dialogue in Section 1.1. 

6.3 Other Ways that Goals Arise 

Eva is driven by its persistent goals, which results in its planning to achieve them, and/or helping its user to achieve 

his/her goals.  We described above how many persistent goals are generated.  Below we elaborate on other ways that 

pgoals arise.   

6.3.1 Collaborative goal adoption 

Because the system is collaborative, it will adopt as its own those goals that it attributes to the user.  For example, if 

it believes the user wants to be vaccinated, it will adopt the goal that the user be vaccinated.  However, such goal 

adoption is not absolute.  Thus, if it believes the user or the system is not allowed to adopt the goal, it will not. More 

formally, if the system believes the user has P as a pgoal, and the system does not have a pgoal that ~P, then the 

system adopts the pgoal that P relative to the user’s pgoal:45  

(P19) pgoal(usr, P, Q) and  \+pgoal(sys, ~P, R)  =>  pgoal(sys, P, pgoal(usr, P, Q)) ). 

For example, if the system believes the user wants to knowref P (e.g., P = the secret formula for Coca Cola), and the 

system does not want the user not to know it, the system adopts the goal that the user knowref P.  However, should 

the system not want the user to knowref P, then the system does not have to adopt the user’s goal and plan to satisfy 

it. Notice also that if the system comes to believe that the user no longer wants P, then the system can abandon its 

pgoal that P, which would then lead to its dropping any intentions it had created to achieving P. 

Among the consequences of the theory of joint intentions [1, 4, 7] are communications that must occur when joint 

intentions are achieved or are impossible.  Rather than implement the entire theory of joint intentions declaratively, 

we choose to incorporate some of its consequences as rules within Eva.  Thus, we have: 

(P20) done(Agt, condit(bel(sys, bel(usr, pgoal(sys, P, pgoal(usr, P, Q))))),Act) and  bel(sys,P)))  =>  

pgoal(sys, bel(usr,P), bel(sys,P)) 

That is, if some action Act has been done prior to which the system believed that the user believed the system had a 

pgoal to achieve P relative to the user’s wanting the system to do so, and after the act, the system comes to believe P, 

then the system then has a pgoal to get the user to believe P (relative to the system’s believing P).  Notice that in virtue 

 

44    There are, of course, many possible actions one might do at a place, with different prior probabilities [102]. Each of the pgoals 
has a probability argument, which would be affected by the prior. Again, one might consider inferring that U wants to do something 

at that location, rather than expand to every possible atomic action.   

45 One could be more specific here to require the system not to have a pgoal that P never be true.   For now, this detail is irrelevant 

to our applications, but may well become so. Likewise, we could have a deontic operator for S’s not being permitted to achieve P.  
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of the definition of pgoal, the system no longer has the pgoal to achieve P because it believes P is true. For example, 

if the system offers to make an appointment, and the offer is accepted, then once the appointment is made, the system 

will inform the user of that fact.  Likewise, if the user directly requests the system to make an appointment, and the 

system agrees, then the system will inform the user once the appointment has been made. In general, these should be 

mutual beliefs that the system has a pgoal dependent on the user, but we are refraining from incorporating that 

theoretical construct for the time being. 

Notice also that similar reasoning would apply if the system came to believe that P is impossible.  That is,  

(P21) done(Agt, condit(bel(sys, bel(user, pgoal(sys, P, pgoal(usr, P, Q))))), Act) and  bel(sys, impossible(P))))  

=>  pgoal(sys, bel(usr, impossible (P)), bel(sys, impossible (P))) 

In this case, the system will inform the user that P is impossible. 

6.3.2 Generating goals to knowif by rule decomposition 

Eva generates goals to know whether or not a proposition P is true in numerous ways.   First, if P is a precondition to 

an intended action A, Eva will generate the goal pgoal(sys, knowif(sys, P), intend(sys, A, Q)) (see Section 6.1).  If Eva 

later learns that P is false, it may then attempt to make it true.  If the intention to do A is dropped, the pgoal to knowif(P), 

and anything depending on it, such as the likely intended Yes/No question, can be dropped as well. Second, if P is an 

applicability condition to an intended action A, Eva will attempt to prove that knowif(sys, P).  If it cannot prove it, Eva 

also generates the goal pgoal(sys, knowif(sys, P), intend(sys, A, Q)). In both cases, it blocks the intention to do A such 

that no further planning is done with that intention until it comes to knowif(sys, P). If it comes to believe the 

applicability condition is false, then P is impossible for it to achieve, so it retracts the intention and unwinds the plan 

subtree that depends on it.  If it comes to believe a precondition is false, it will attempt to create a plan to achieve it.  

Given a pgoal(sys, knowifP)), the system can plan a yes-no question (YNQ that P), provided it can find a listener L 

whom it can ask and of whom it believes knowif(L, P).  This may involve asking someone other than the user (in the 

example, it is the pharmacy CVS). 

Another special case of generating goals to knowif(sys, P) arises when P is defined in terms of a disjunction of Prolog 

clauses.  For example, one might state a rule that a person is eligible for the Covid vaccine if: 

Clause1 ~ The person’s age is greater than 65, or 

Clause2 ~ The person’s age is between 50 and 64, and the person is caring for someone who is disabled, or 

Clause3 ~ The person’s age is less than 50 and the person is an essential worker 

If the system has a pgoal to know whether the user is eligible for a covid vaccine, i.e., 

pgoal(sys, knowif(sys, eligible(User, covid_vaccine))),  

Eva also generates:  

pgoal(sys, knowif(sys, Clause1), pgoal(sys, knowif(sys, eligible(User, covid_vaccine)))) ,   

as well as pgoals to knowif Clause2 and Clause3.  Notice that these three pgoals are made relative to the eligibility 

pgoal; if any of the pgoals is achieved, eligibility becomes true, and the other pgoals are dropped. 

7 Semantics of Slots   

In the present plan-based dialogue system, slots are quantified-in goals, such as the time you want to the system to 

make an appointment for a vaccination (see also [13, 52]). Assuming the user wants the system to make an 

appointment, the system’s goal adoption and planning would generate pgoals of knowing the date and the time for 

which the user wants to make an appointment. 

Using the definition of knowref and the semantics in Appendix A, we can now provide a meaning to statements like: 

The system wants to know the date for which the user wants it to make an appointment for the user at some 

business b. 
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This is represented as (showing an existential binding for other variables that we have so far been suppressing): 

pgoal(sys, knowref(sys, Day^pgoal(usr, ꓱTime^done(sys, make_appointment(usr, b, Day, Time))), Q) 

Expanding knowref into its definition, we see that this formula essentially quantifies into two levels of modal operators 

– bel and pgoal, namely: 

pgoal(sys,  ꓱDay^bel(sys, pgoal(usr, ꓱTime^done(sys, make_appointment(usr, b, Day, Time)), Q)) 

or, in words:  

The system wants there to be a Day of which the system thinks the user wants there to be a time such that system 

makes an appointment for the user at business b on that day and time.46 

To make sense of such statements, consider that bel(A, P) means that P is true in all of agent A’s  B-related possible 

worlds (see Appendix A). The meaning of ꓱX^bel(A, p(X)) is that there is some value of X (call it d) assigned to it by 

the semantics of the “valuation” function v in the world in which the formula is evaluated, such that the same value 

assigned to X in all of A’s B-related worlds satisfies p(X). Because the existential quantifier out-scopes the universal 

quantifier, the chosen value d is the same choice in every related world such that p(d). As modal operators are 

embedded, the corresponding chains of B and G-relatedness continue, with the same d being chosen in all of them 

(see Figure 7). 

Assume the system has a pgoal that there be a day on which the system thinks the user wants the system to make an 

appointment at a vaccine center.  This would likely result in a question like “When would you like me to make the 

appointment?”. The user model contains a default assertion that the user knows what s/he wants, so by default the 

user knows when s/he wants to have appointments. However, the user might say “I don’t know,” or might say “Mary 

knows the day,” or say, “Ask Mary”.  We adopt the Gricean heuristic that the user would have said the day if s/he 

knew it, and s/he didn’t, so s/he doesn’t know the day. The general default still holds, but a specific neg(knowref(usr, 

Time^pgoal(…))) would then be asserted, which would cause that default to be inapplicable.  This would prevent the 

system from asking the same question again, as the precondition would no longer hold.  

The system plans the wh-question when the effect of the speech act (Figure 5) matches the content of the system’s 

pgoal, provided that the system believes the precondition holds, i.e., the system believes that the user knows the 

referent of “the time User wants to make an appointment”. If the system does not believe the user knows the referent, 

but knows of someone else who does, it could then plan a question to that other agent.   

 

46 There would likely be a similar knowref for choosing the time.  Note also that Time2 is the date/time for the making of the 

appointment, not for the date/time of the appointment.  Finally, the other missing arguments to the action are bound by existential 

quantifiers within the scope of the pgoal.  
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7.1 Handling Constraints on Slots 

Every wh-question has a Variable and a Predicate which constrains its value. When the user conjoins another predicate, 

it further constrains that value. So, if the system wants to know the time that the user wants an appointment, the system 

has the following pgoal:  

pgoal(sys, knowref(sys, Time^pgoal(usr, done(sys, make_appointment(usr, b, Day, Time), Cond), R)), Q) 

When the user says: “after 10 am”, the system then has (assuming the variable Day has already been given a value): 

pgoal(sys, knowref(sys, Time^pgoal(user, done(sys, make_appointment(usr, b, Day, Time), and(Cond, 

after(Time, 10am))), R)), Q) 

Critically, as shown here, the after constraint needs to be in the scope of the user’s pgoal, because it is not simply that 

the system believes the time is after 10am, but that the user wants it to be after 10am.47 Another example of a constraint 

(“the earliest time available”) can be found in the sample transcript. 

 In the course of this processing, Eva asserts that: 

neg(knowref(user, Time^pgoal(user, done([sys, make_appointment(usr, b, Day, Time), Cond), R))) 

That is, the user does not know what time s/he wants the system to make the appointment. 

8 Operational Semantics – BDI architecture 

Belief-desire-intention architectures have been researched for many years, beginning with Bratman et al. [75].  

Inspired by philosophical and logical theories, reactive BDI architectures such as PRS [103] essentially sensed changes 

in the world that updated the system’s state (its “beliefs”).  The architecture determined which of its pre-packaged 

“plans” could be used to achieve its “goals” in that state. These architectures expand the plans hierarchically to decide 

what to do. Sardiña et al. [104] show that the inner loop of such BDI architectures is isomorphic to HTN (Hierarchical 

Task Network) planning.  However, neither BDI architectures nor HTN-based systems engage in plan formation (e.g., 

[81], nor do they reason about other agents. Sardiña et al. [104] and  de Silva et al. [105] present formal theories of 

how to incorporate plan formation in such architectures, in part using declarative statements of the system’s goals. In 

our case, the Eva system needs to be more declarative still in order to reason about the user’s beliefs, goals, and 

intentions. There is also some confusion in the BDI architecture literature in the use of the terms ‘intention’ and ‘plan’. 

For other BDI architectures, intentions consist of plans, which are contained in a fixed plan library, corresponding to 

our actions and their hierarchical definitions. In contrast, Eva’s plans consist of its intentions and goals, whose contents 

are actions (that are contained in a library) and propositions to be made true. Eva’s plan is created at run-time by the 

hybrid planning algorithm, whereas other BDI architectures’ plans are fixed and reactively executed.  In virtue of the 

 

47 In addition to adding constraints, Eva can also revise the pgoal, including embedded values or constraints, such as would occur 

with “how about 9 am?” 

System asks a Whq to User about the time User wants to make an appointment 

                    
       “Slot” 

Precondition:   User knows the referent of the time User wants to make an appointment   

Effect:   System knows the referent of the time User wants to make an appointmen 

Figure 5. Slot-filling question 
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Cohen and Levesque [1] semantics, Eva’s intentions also contain a relativization parameter, enabling it to unwind its 

plans appropriately.   

The Eva system performs the basic loop described below, and depicted in Figure 6. It relies on the declarative 

representation and reasoning processes described above, as well as the intention formation and commitment processes 

in ([1]) that state the relationships among intentions, persistent goals, and beliefs.  

8.1 Eva’s Main Loop  

Eva’s operation could be described as looping through the following steps (where S identifies the system, and U stands 

for the user): 

1) Observe the world, including U’s action(s) AU, including speech acts. 

2) Assert that U wants (i.e., has pgoal for) the effect of AU; If AU is a speech act, assert that U wants S to believe 

U wants the effect.  If S trusts U, this will collapse “U wants S to believe U wants” into “U wants” the effect.48  

3) Assert that U believes that the precondition of AU holds, and if S believes the action AU was successful, assert 

that S believes the precondition holds. 49 

4) Apply plan recognition rules until no new beliefs, persistent goals, or intentions are created.  

5) Debug U’s plan, i.e., check the applicability conditions for U’s intention(s) in the plan.50   

i) If the applicability condition to an act is false, plan alternative ways to achieve the higher-level 

effect of the act.  

ii) Retract any intentions or pgoals that are marked as not_applicable, and remove their subtree of 

dependent pgoals/intentions. If there are no possible actions that can be performed to achieve the 

applicability condition, inform the user of the failure of that condition (e.g., no vaccination center 

has vaccine available).51  

6) Adopt U’s pgoals to achieve P as the system’s own pgoals -- i.e., pgoal(U, P, Q) → pgoal(S, P, pgoal(U, P, 

Q)) if P does not conflict with system’s existing pgoals.52  

 

48 However, if S has reason not to trust U, then S need not have the lesser embedded pgoal, This enables S to protect its innermost 

mental states from untrustworthy agents, which will alter its goal adoption and what it then plans to do. 

49 We are ignoring the temporal consideration that U believed the precondition held before the act. 

50 Shvo et al. [53] discuss how to find discrepancies in the inferred user plan based on what the system believes to be the user’s 

incorrect beliefs (see also [37]). 

51 Eva does not retract the not_applicable predication on the act, thereby preventing the act from being planned again. 

52 Notice the relativization to the user’s pgoal. If the system learns the user no longer has the pgoal, the system can drop its adopted 

pgoal.  

Figure 6.  The Basic BDI Architecture 
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7) For S’s pgoal to achieve proposition E, S plans to achieve E by finding a (possibly complex) action AS that 

achieves it, resulting in an intention to perform action AS. If AS benefits the user, S also creates a persistent 

goal to know whether the user would want S to perform AS. 
53 

8) If S does not know whether the applicability condition AC for AS is true, formulate a question to find out 

whether it is. Also, block the intention to perform AS until the truth or falsity of AC is believed. 

9) Execute (some of the) intended act(s) AS. We provide details regarding the choice of what intentions to 

execute below. 

10) Remove the intention to perform AS if AS was done.  

11) If AS is deemed impossible (e.g., the applicability condition for AS is believed to be false), unwind the 

intention to perform AS via the relativization conditions, continuing to unwind through the chain of pgoals 

and intentions that depend on AS. 

12) If AS terminates a higher-level act that S was doing, retract the doing predicate and assert that the higher-level 

act was done.  

13) If the execution of AS fails (e.g., failure has been propagated to Eva from some backend system), remove the 

intention to achieve As and plan again to achieve the effect for which AS was planned. Inform the user of the 

failure of the action (e.g., the credit card could not be charged), and if the backend provides that information, 

the reason for the failure (e.g., card number is invalid).   

These steps are repeated until no more formulas have been asserted.  

8.2 Intention Satisfaction, Abandonment, and Revision 

The logic of intention prescribes when intentions must be abandoned. For example, in Step 10, if an intended action 

has been performed, the intention is removed because it is satisfied. Likewise in Step 11, if the system discovers that 

an applicability condition for an intended action is false, then (because it can do nothing to achieve false applicability 

conditions), it concludes the intended action is impossible, and so abandons it and unwinds the subtree of 

pgoals/intentions that depends on the intention to perform the impossible action. For example, if the system forms the 

intention to achieve the conditional act, condit(P, Act), and it does not know whether P holds, it forms the pgoal to 

knowif(S, P), relative to the intention to do condit(P, Act). That pgoal to knowif(S, P), may well lead to an intention to 

ask a yes-no question as to whether P holds. Because of the chain of relativizations, if the intention to do the 

conditional action is abandoned, say because S no longer wants the effect of Act to which the conditional Act was 

relativized, the pgoal to achieve the knowif(S, P) will eventually also be dropped.    

Intentions may also be abandoned by the system when users changes their mind about their goals. For instance, if the 

system has a persistent goal to achieve P, relative to the user’s persistent goal that P, and the system comes to believe 

that the user no longer wants to achieve P, the system can drop its pgoal to achieve P, and unwind the plan subtree 

that depends on P. The plan subtree that depends on P possibly contains additional intentions and goals that have not 

yet been acted on, but were placed on the agenda in order to achieve P. 

We note that in the scenario described in our example (Section 1.1), U has changed her mind after the system has 

already affected the environment to achieve U’s previously specified goal (i.e., an appointment for Monday at 9 has 

been made). In our example, in order to achieve U’s goal of not having an appointment on Monday at 9, the system 

offers to reschedule U’s appointment, since the effect of the rescheduling action is both that U no longer has an 

appointment at the old date and time, and also that U has an appointment at a new date and time. Thus, the rescheduling 

action is an example of an action to ‘undo’ the consequences of S’s having achieved U’s old goal. 

Regarding Step 13, we assume for now that the system can in fact execute any of its intentions for which the 

applicability condition and precondition are true at the time of execution. However, ability to execute an action does 

not necessarily translate into successful execution when the execution is delegated to some external agent. For 

example, assume Eva has gathered credit card information and sends the appropriate request to the credit card 

 

53 We initialize the system with benefits(Act, Agt) predications for all actions it knows about.  Actions can benefit the system, user, 

or both. For example, the make_appointment act benefits the user, not the system. So, if the system plans to do it, it needs to find 

out whether the user wants it to do so.  
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company to charge the card, only to receive a failure with a response that the card is over the credit limit. In this case 

the system’s act failed. Eva would inform the user of that failure as an impossibility because it behaves according to 

the principles of joint intention theory [1], which entails informing the user when a joint intention is impossible to 

achieve. However, it then would replan to achieve the higher-goal of finishing the transaction by asking the user for 

another credit card (or some other plan). It would not retry that specific card because the intention to charge that card 

is impossible to achieve. 

Icard et al. [106], Shoham [107], and Van der Hoek et al. [108], all consider the problem of intention revision with 

logics similar to or inspired by the one discussed here. The approach we are taking distinguishes itself in several ways. 

First, Eva relativizes intentions and goals to one another so that if a pgoal to achieve P is undermined because the 

intention/pgoal to which it is relativized has been given up, then that pgoal to achieve P may be given up as well. 

Second, if an intention is adopted relative to a belief, and for some reason that belief is retracted, so may the intention 

(e.g., “I intend to take my umbrella because I believe it may rain”). We cannot adopt Shoham’s [107] use of a simple 

database of intentions, because we need to quantify into multiple levels of modal operators (see Appendix A.2).  In 

both van der Hoek et al. [108] and Icard et al. [106], a distinction is made between beliefs that the agent adopts because 

it believes its intentions will be successful, and beliefs that occur from observing the world. Unlike the cited authors, 

Eva does not infer beliefs because of the effects of actions stated in the action description. Those descriptions are not 

dynamic logic expressions per se. The agent has a pgoal for the effects, but until the agent does the action, and 

determines that it was successful54, it does not come to believe the effect. This simplifies joint intention and belief 

revision, as well as dialogue. Finally, as emphasized in van der Hoek et al. [108], there may be multiple reasons for 

forming an intention. They argue that the intention should only be retracted if all those reasons are themselves 

retracted. In Eva’s case, the system might have two intentions to perform the same action A, each relativized to a 

different proposition. If one relativization is given up causing its relativized intention to be given up, the other intention 

to perform A that was relativized differently would still remain.  

9 What Intentions to Execute 

At any time, the system may have multiple intentions, including communicative intentions, that could be executed. 

For example, at the same time it could have a rapport-building action (“that’s terrible…”, “I’m sorry that…”), a 

confirmation, one or more informatives, a question to ask, and a request to pose.  Some of these actions may change 

the “topic” of discussion, or begin work on a new goal, which can be introduced by discourse markers such as “OK, 

now”, “so”, etc. There may be mixed initiative digressions created by the user, such as seen in the example above 

when the user answers the question “how old are you?” with another question “why do you ask?”, and with the 

conversation eventually being returned back to the original topic with a repetition of the prior speech act. Thus, there 

may be many possible choices for what action(s) to do next. Although one could imagine learning a policy for deciding 

among the actions to execute, the needed data for a new domain would be difficult to obtain, even with user simulators 

[46, 101]. As a result, we have implemented an initial policy in which Eva executes speech actions from its set of 

enabled intentions in the following order (with examples drawn from to the above dialogue): 

1. Rapport-building (“Sorry to have to ask again”) 

2. Confirmations (“OK, you are eligible for the Covid vaccine”) 

3. Informatives on the same topic (“The reason why ….”) 

4. Repetition of a prior speech act in order to return to a prior goal/topic (“but how old are you?”) 

5. Informatives on a new topic 

6. A single directive or interrogative action, requiring a response from the user (“Are you caring for someone 

who is disabled?”, “What date would you like the appointment?”). Again, continuing on the same topic is 

preferred to switching to a new one. 

In a single turn Eva may execute multiple speech acts, but no more than one directive/interrogative. 

Of course, how one defines “topic” for various speech acts and goals is difficult (cf. [19, 33]).  We have provided Eva 

with an initial topic analysis based on the structure of the logical form at issue, but it is a matter of future research.   

 

54 How it does that is a different, but very interesting matter, especially for the intended effects of speech acts. See [7]. 
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10 Use of Context 

Eva maintains numerous types of context. First, at the logical form and linguistic levels, it maintains a chronologically-

ordered done representation of all utterances and their speech acts, as well as domain actions, that have been performed 

by the dialogue participants. In addition, it keeps track of pgoals and intentions that it currently has, and also previously 

had but have been retracted. It also maintains the instantiated intended effects of both parties’ speech acts. For 

example, the system’s wh-question to the user “how old are you?” is represented as the act:     

whq(sys, usr, Age#years^age_of(usr, Age#years)),  

whose intended effect the system would maintain in the context database as: 

knowref(sys, Age#years^age_of(usr, Age#years)).   

This contextual information is used to derive a full logical form when the user answers a wh-question with a fragment, 

say “45 years old”. In this case the parser generates the expression 45#years, which is unified with the typed variable 

Var#Term of the contextual knowref formula above. This determines the predicate in question, enabling the Eva to 

identify the user’s speech act as an informref(user, sys, 45#years^age_of(usr, 45#years)). Likewise, in processing 

answers to yes-no questions, Eva searches its context database for a knowif(sys, Pred), which, if successful, results in 

the user’s speech act being identified as an inform(user, sys, Pred) or inform(usr, sys, ~Pred). Context also informs 

numerous other aspects of the system’s processing (e.g., to generate anaphoric expressions55).  

11 Explanation 

A major advantage of planning-based systems is that they provide an immediate mechanism to support the 

generation of explanations [109].  Unlike black-box machine-learned systems (e.g., [46]), the present 

system has a plan behind everything that it says or does, such that it can answer questions like “why did you 

say that?”. The explanation finds the path in the plan starting from the action being referred to, and follows 

the chain of achievements, enablements, and relativizations backwards to the intentions and persistent goals 

that led to the action to be explained.  For example, 

 S: “how old are you?” 

U: “why do you ask?” 

S: “The reason is that I need to determine whether you are eligible for the Covid vaccine” 

The pgoals needed to answer this request for explanation are described in Section 6.3.2.  What would constitute a 

“good” explanation is a subject of considerable research [67, 110–112]. For example, in the dialog above, a good 

explanation would not be that the system asked for the user’s age because it wanted to know the answer! Although 

that is the closest pgoal in the plan, that answer is likely something that the user already knows (S and U both are 

taken to know what the desired effect of a wh-question speech act is).56 On the other hand, a good explanation is also 

not one where Eva asks the question because the user wants to be vaccinated, which is at the top of the plan tree. For 

the answer to the explanation request to be reasonable, Eva finds the lowest pgoal in the plan whose content the user 

does not already believe. In doing so, Eva needs to provide the explanation that the precondition for being vaccinated 

is eligibility. 

The system also engages in proactive explanation by informing the user of preconditions of actions as goals the system 

needs to achieve. For example, in an insurance domain, it says: “In order to help you file a claim for this incident, I 

need to have identified your phone”. Importantly, as with any action, the system checks whether the effect is already 

 

55 Natural language generation in Eva is beyond the scope of this paper. 

56 Kaptein et al. [113] show that adults prefer goal-based explanations to belief-based ones.  However, their algorithm employs a 

fixed goal-tree for their domain of study.  Their algorithm will find the goal that immediately dominates the action to be explained.  

In our planning system, this would generate obvious explanations, so we provide a higher-level goal that is not immediately obvious 

to the listener.   Of course, one would need a theory of obviousness, but that must await future research. 
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true, i.e., for an inform, whether the user already believes the propositional content. In particular, some of the 

preconditions are stated as being general common knowledge. For example, to have someone receive a vaccination at 

a vaccination center, the person needs to be located at the vaccination center. Because that proposition’s being a 

precondition (as opposed to its truth) is common knowledge, the system does not plan an inform speech act of the 

need for this proposition to be achieved. But notice that it does recognize the user’s plan to achieve her being at the 

vaccination center, and collaborates by telling the user what she would need to know, namely how to drive there. We 

leave more work on explanation to further research.  However, we note that the overall planning-based framework 

inherently supports explanation since elements of the plan are causally linked to one another; this feature stands in 

stark contrast with much of the current AI research (conversational or otherwise) that relies on practically inscrutable 

models for generating answers or predictions. 

12 Other Related Work  

In addition to the references mentioned above, this section discusses three threads of research that strongly relate to 

the topics discussed here: epistemic planning, slot-filling dialogue systems, and plan-based dialogue systems.   

12.1 Epistemic Planning 

The planning community has considered planning coupled with sensing actions in order to overcome incomplete 

knowledge (e.g., [51, 66, 114, 115] ). Epistemic planning systems generate plans to influence agents’ beliefs, both 

those of the planner and of other agents. We argue that an essential feature for any epistemic planner to support a 

dialogue system is that it be able to handle the incomplete belief/knowledge described by knowref, and be generalized 

to modal operators other than belief.  However, most epistemic planning systems rely on the content of a belief (or 

multiply-embedded belief operator) being propositional (i.e., not first-order) and therefore do not support such 

reasoning.  There are a few notable exceptions, including the work of Liberman et al. [116] who studied a first-order 

extension of dynamic epistemic logic (DEL) and appealed to term-modal logics to define the semantics for their 

language and corresponding epistemic planning system. Liberman et al.’s framework was applied to epistemic social 

network dynamics, which concerns the flow of information and knowledge through social networks, and how 

individuals’ and groups’ beliefs and behaviors are impacted (e.g., one might wish to model the spread of 

misinformation) [117]. Eva goes beyond Liberman et al.’s work by offering a complete implementation of a 

collaborative dialogue system. Importantly, in addition to belief or knowledge, Eva can reason with a number of modal 

operators essential to collaborative dialogue (e.g., persistent goal, intention) and can quantify into all of these 

modalities. Finally, Liberman et al. [116] offer a compact characterization of action schemas, inspired by PDDL, 

which bridges between research on planning formalisms and DEL. Future work could explore whether Liberman et 

al.’s action and domain representations could be used for our collaborative dialogue purposes. 

The closest epistemic planning work to ours is the PKES planner of [66, 115, 118]. They developed a modal logic-

based dialogue planning framework that uses one database to keep track of an agent’s knowing whether a proposition 

is true, along with a different database for an agent’s knowing the values of terms (cf. [52]). Driven by PKES, Petrick 

and Foster [119] developed an impressive human-robot social interaction system in a bartending domain. While the 

problems are similar to ones we tackle, the approach itself is limited by the use of a single level of databases, and its 

use only for the system’s belief modality. In order to plan speech acts in dialogues, Eva’s planning system needs to 

create plans to influence another agent’s beliefs, (persistent) goals and intentions. Specifically, we showed here and 

in Cohen [49] the desirability of having quantifiers whose scope includes multiple modal operators.  For example, the 

representation of “John wants to know whether Mary knows the date that Sue wants to eat”, which could lead to the 

question to Mary “when does Sue want to eat?”. To represent these would require a goal database within which is a 

know-if database, containing a know-value database within which is a goal database. Also, one could in fact quantify 

over agents to have: “John wants to know who knows the secret.” Then it is not clear which database should be used. 

Eva currently reasons and creates plans with quantified-in formulas directly and without such databases. 

12.2 Slot-Filling Dialogue Systems 

The dialogue research community has concentrated in recent years on a form of task-oriented dialogue that emphasizes 

slot-filling, which dates back to the Gus frame-based dialogue system [120]. Wen et al. [46] say this about task/goal-

oriented dialogue (emphasis ours): 
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Given a user input utterance, ut at turn t and a knowledge base (KB), the model needs to parse the 

input into actionable commands Q and access the KB to search for useful information in order to 

answer the query. Based on the search result, the model needs to summarise its findings and reply with 

an appropriate response mt in natural language.57  

Building a system solely to execute actionable commands is a very limited conception of goal-oriented dialogue.  For 

example, the original study of task-oriented dialogue from Grosz [121], had the system giving the user instructions on 

performing a task (assembling an air-compressor).  Numerous researchers (e.g., [14, 19, 122]) have emphasized the 

need for collaborative tasks, in which both parties can get the other to perform actions, though typically they have not 

emphasized slot-filling per se.  Eva is squarely in the camp of collaborative dialogue, for which slot-filling is a 

necessary component. 

Although slot-filling is an important step, intent classification and slot-filling are only part of what it takes to engage 

in a task-oriented dialogue. The Dialogue State Tracking Challenge [56, 123] attempts to standardize a corpus-based 

test for systems that acquire values for slots.  The most explicit definition of “slot” we can find is from Henderson 

[56] in describing the Dialog State Tracking Challenge (DSTC2/3):  

The slots and possible slot values of a slot-based dialog system specify its domain, i.e. the scope of 

what it can talk about and the tasks that it can help the user complete. The slots inform the set of 

possible actions the system can take, the possible semantics of the user utterances, and the possible 

dialog states… For each slot sϵ S, the set of possible values for the slot is denoted Vs.  …. 

The term dialog state loosely denotes a full representation of what the user wants at any point from 

the dialog system. The dialog state comprises all that is used when the system makes its decision about 

what to say next. … the dialog state at a given turn consists of:  

• The goal constraint for every informable slot s∈ Sinf. This is an assignment of a value v∈ Vs that 

the user is specifying as a constraint, or a special value Dontcare, which means the user has no 

preference, or None, which means the user is yet to specify a valid goal for the slot.  

• A set of requested slots, the current list of slots that the user has asked the system to inform. 

This is a subset of Sreq. …  

Thus, slots are considered to be parameters of an action that either are filled by an atomic symbol, are unfilled, or are 

filled by the atoms dontcare, dontknow, or none. As we discussed in Cohen [49], the meaning of these values, or lack 

of values are unclear — are they quantified variables?  Is there a negative somehow involved in dontcare and 

dontknow? If so, how are those embedded negatives used in reasoning? The notion of “informable” and “requestable” 

slots are intended to be approximations of modal operators and incomplete knowledge about the user’s beliefs and 

desires, though without any accompanying semantics. 

Overall, this intent+slot meaning representation is far too limiting, e.g., it does not handle true logical forms including 

Booleans, conditionals, superlatives, comparatives, temporal qualifications, etc. More difficult still, dialogues often 

provide constraints on the values for slots, rather than providing an atomic value, such as ‘7 pm’.  Indeed, we showed 

in Cohen [49], examples in which the conversants collaboratively fill a slot, rather than just one party’s doing so.  A 

more general approach is needed (see Cohen [49] and the next section for further discussion). 

12.3 Planning-Based Dialogue Systems 

Although we have provided extensive references to planning-based dialogue systems throughout the paper, there are 

a number of important works with which to compare. The closest implementations have been the ARTIMIS system 

[39] and systems from Allen’s group at the University of Rochester, (Trips, Trains, Cogent), and a recent plan-based 

dialogue system from IBM [124]. 

 

57 In a footnote, the authors qualify their goal as: “Like most of the goal-oriented dialogue research, we focus on information seek 

type dialogues.” Unfortunately, this strand of research is overly restrictive, and the limitations are deeply embedded in the 

mathematics of the approach.   
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First, there have been research systems that partially attain some plan-based capabilities.  RavenClaw [125] employed 

a fixed hierarchical descriptions of dialogue moves, but did not engage in on-the-fly planning and reasoning.  Trindikit 

[126] provides the dialogue system developer with generic tools to build rule-based dialogue systems using a 

simplified dialogue state and set of communicative actions.  Although these systems take us part of the way to our 

desired type of plan-based system, they eschew representations of mental states of the participants, which Eva adopts 

and reasons with directly. 

Beyond the early plan-based dialogue work at the University of Toronto, the first system to incorporate a variant of 

the Cohen and Levesque [1] logic was ARTIMIS [30, 39], which reasoned about beliefs and intentions for a deployed 

system that engaged users in spoken dialogue about finding services in the French Audiotel telephone network. The 

system engaged in mixed-initiative question-answering, and had to deal with substantial numbers of speech 

recognition errors. While very similar in spirit, the Eva system develops and makes more extensive use of the plan 

structure, collaboration (plan recognition, plan debugging, planning), goal/subgoal relativization, and explanation. 

The use of quantified modal operators in Eva is also more extensive, especially as applied to quantification through 

multiple belief/pgoal/intend operators.    

Lemon et al. [127] developed the WITAS multimodal conversational system that drives an autonomous helicopter. 

WITAS bears some similarities to Eva in terms of its ability to reason about domain actions and maintaining multiple 

threads of conversation.  The system is a derivative of the Information State approach to dialogue [126]. The 

Information State implementation that WITAS maintains include a/an:  Activity Tree, Dialogue Move Tree (DMT), 

System Agenda, Pending List, Salience List, and Modality Buffer. The Activity Tree corresponds to Eva’s hierarchical 

action expressions, but only seems to allow decompositions into sequential actions vs. Eva’s use of sequential, 

conditional, and disjunctive actions.  The actions are described as having preconditions and effects, but plans are not 

composed on-the-fly into future-directed plans.  The actions can be obviated if the effects are found to be true in the 

system’s database, but there is no mechanism to create goals to find out whether the preconditions are true if the 

system cannot prove those preconditions. Thus, unlike Eva, the robot system is essentially operating in a closed world. 

The Dialogue Move tree precomputes how user speech acts can “attach” to nodes in the DMT, though which nodes 

receives the attachment seems to depend solely on the dialogue act types rather than the effects of those acts (which 

are not specified).   The generation of output employs the Gemini unification grammar [128] that renders logical forms 

as utterances.  This is more general than Eva’s natural language generator, which uses a structural decomposition of 

logical forms to generate simple utterances. WITAS’ LFs are either on the system agenda or on the “pending list”, 

which stores questions that the system has asked (but not those that the user has asked).  Eva’s pending list keeps track 

of questions from both parties, and also incorporates requestive types of speech acts, enabling it to more generally 

engage in multi-threaded interactions. WITAS’ generation process may “aggregate” multiple clauses, rendering “I 

will fly to the tower and I will land at the parking lot” as “I will fly to the tower and land at the parking lot” (see also 

Appelt (1985) for similar plan optimizations).  Finally, anaphoric expressions are generated if an object in a logical 

form is at the top of a “salience list”. Eva generates an anaphoric expression for a logical form element if that element 

is present in the LF of the last dialogue turn (including both party’s contributions).  Apart from these differences, 

WITAS appears to do no plan recognition, nor obstacle detection or helpful behavior. Finally, its state representation 

is only of facts that the system believes to be true and goals that the system is pursuing, not a general-purpose 

representation of both system and user’s mental states. 

An interesting and useful point of comparison is the COGENT framework [19], the latest evolution of the TRIPS 

system developed by James Allen’s team at University of Rochester, and, more recently, the Institute of Human and 

Machine Cognition (IHMC). Like Eva, COGENT is specifically addressing the need for dialogue systems to tackle 

much more complex tasks than what the current generation of conversational assistants are capable of [129]. 

Interestingly, COGENT evolved from the same ideas of using planning and plan recognition to drive dialogue [9], 

with speech acts serving as essential operators in such a plan [8, 9, 13]. Unlike Eva, however, the 

TRAINS/TRIPS/COGENT series of systems placed emphasis on natural language understanding, built around the 

TRIPS parser [129, 130], to create a very rich, domain-independent utterance meaning. The pursuit of domain 

independence led the group towards a theory of dialogue based on Collaborative Problem Solving (CPS), whereby the 

agent’s competence in carrying out collaborative dialogue is completely separated from the competence to carry out 

domain actions. Thus, in COGENT the dialogue model proper is incorporated in the CPS Agent (CPSA), whereas 

domain-specific planning and execution are incorporated in a separate Behavioral Agent (BA). Dialogue in COGENT 

is reflected in updates to the CPS state, which keeps track of the status of joint intentions, and those updates are only 

happening after fairly extensive communication between the CPSA and the BA. In this model, a user’s communicative 

act leads to a CPS act that change the CPS state, which in turn leads to a change in the problem solving state of the 
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BA; generation of communicative acts by the system follows this path backwards.58 This division of labor between 

managing the dialogue itself and the generic linguistic aspects of the interaction on one hand, and managing the 

individual problem-solving aspects of the system on the other hand is meant to make the COGENT framework 

attractive to potential developers of collaborative dialogue systems without requiring them to have sophisticated 

linguistic expertise. However, they would still need to master the complex logical form language embedded in the 

CPS acts to create mappings to and from their internal representations. And, when utterances in their chosen domain 

fail to parse, they are out of luck.59  

By contrast, Eva uses a ML-based semantic parser, which may generate a less-detailed LF, but is much easier to train 

and improve. Although Eva currently does not have as explicit a model of joint intention as COGENT does, its 

dialogue model does, in fact, ensure that the system’s and user’s plans mesh appropriately in true collaborative fashion. 

Eva has a more explicit model of the participants’ beliefs and intentions, which provides it with a solid basis for 

implementing additional reasoning about joint intentions and shared knowledge, if need be (cf. [131]). In fact, 

COGENT lacks a deep model of user’s beliefs, relying on the BA to do so. CPSA’s dialogue model does not depend 

on having a “theory of mind”, which is a potentially severe limitation.  For example, COGENT cannot model a multi-

user conversation, in part because it cannot distinguish the different users’ mental states.  We think these mental states 

are crucial, so much so that they are at the core of Eva’s planning-based dialogue model. Whereas Eva has the ability 

to explain its own behavior, COGENT’s current model has the ability to justify answers, and proposed modifications 

or failures of the CPS acts, but in its current incarnation it cannot answer a question such as “why do you ask?” 60 

Finally, we consider the recent work of Muise et al. [124], which we will refer to as PGODS (based on the paper title).  

This work is very much on the same track as ours, but concentrates on the planning aspect rather than the dialogue per 

se.  PGODS attempts to provide a high-level specification methodology for simple dialogue systems centered around 

a restricted form of planning. For PGODS, the system developer specifies dialogue actions and representations of 

back-end actions, as well as system responses for each, from which a planner essentially compiles a large tree of all 

possible actions/utterances the system and end user can take. Based on this, the authors nicely show how a planning-

based approach is more compact than having to specify each step of a scripted dialogue.61  Prominent among 

approaches to dialogue from which PGODS leverages is the classical “intent+slots” approach, which we have 

discussed in Section 12.2.  Unlike those approaches, the PGODS approach allows one to specify more general types 

of dialogues, but still restricted in their complexity. 

A few specific comments will serve to differentiate the PGODS approach from ours.  First, the FOND (Fully 

Observable Non-Deterministic) planner employed [132] uses the PDDL language [83] for expressing preconditions 

and effects, which only allows atomic symbols to be expressed, rather than the modal logic expressions that Eva uses.  

This very much restricts the logical forms that the system can handle and the kind of reasoning it can support. PGODS 

(and PDDL) does not distinguish between preconditions and applicability conditions, such that the former can be made 

true, but the latter cannot.  Likewise, Eva’s use of hierarchical action descriptions is more expressive than PDDL (and 

the hierarchical variant, HDDL).   The planning formalism used by PGODS encodes all of the possible outcomes of 

an action in that action’s definitions, which would need to be similarly encoded for every action.  For example, all the 

possibilities that might arise when an action is deemed to be impossible are folded into that action’s PDDL 

representation. For all such conditions, PGODS assumes that the developer is specifying the system’s response 

utterances by hand.  In Eva, these are technically not part of the plan but result from its execution and are handled by 

the BDI architecture, which itself depends on the semantics of intention (specifically, the conditions for giving up an 

intention).   

A very substantial difference between the PGODS system and Eva is the representation of incomplete knowledge 

about the user’s mental states.  In particular, the PGODS system appeals to the well-known 0-approximation [133] 

and represents knowledge and uncertainty via a simple 3-valued logic that supports the use of efficient planning tools. 

 

58 This is an over-simplification, but for the purpose of this necessarily superficial description it will do. 

59 For example, we tested the initial sentence in our initial dialogue, “Are there any Covid vaccination centers nearby?” on a version 

of the TRIPS parser (http://trips.ihmc.us/parser/cgi/drum-dev) and the resulting parse has an incorrect interpretation for “nearby”, 

which can be problematic for generating the correct response from a suitable BA. 

60 However, we do believe COGENT’s model can be extended to handle such questions.  

61 The plan-based dialogue community knew this from the start, but since scripted dialogues were not considered to be a major 

research advance, the argument was never made explicitly.   

http://trips.ihmc.us/parser/cgi/drum-dev
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In contrast, Eva’s modal logic framework offers a much richer way of encoding (multiple) agents’ knowledge as well 

as a myriad of other mental states such as beliefs, goals, and intentions.  

Finally, while not its focus, the PGODS system does not handle multi-agent settings, plan recognition, obstacle 

detection, goal adoption, and collaboration. There are many more differences, but suffice it to say that Eva operates 

at a more theoretically-grounded level.  

Recent systems [134, 135] have parsed utterances into “data flow” graphs that provide a graph query or retrieval 

“plan” of execution or operations on that graph.  Data flows from one query action to another is exactly analogous to 

shared logical variables in a unification framework. Indeed, the parsing of utterances into logical forms, dating back 

at least to the Chat system of Warren and Pereira [136] as executed by a Prolog-based interpreter essentially provides 

“data flow” during execution. The representation of meta-operations on the dataflow graph, such as referring to an 

entity, or replacing one entity or subset of logical form elements with another, can be handled by conjoining additional 

constraints, and by replacing predicates in logical forms with others.  More generally, the above-cited works do not 

discuss domain or speech action planning, plan recognition, nor collaboration and thus do not provide a framework 

for collaborative planning-based task-oriented dialogue. 

13   Limitations  

This initial system has many limitations. First, it incorporates algorithms for which some researchers have surely built 

superior renditions for isolated situations.  However, they have not typically been adapted for dialogue. For example, 

there are better probabilistic planners and plan recognizers that have been developed for academically interesting 

problems. Yet their limitations may preclude their use here if they have not been adapted for multi-agent interaction, 

or for reasoning with adequate representations of mental states.  Of course, it goes without saying that such a system 

will eventually need to deal with uncertainty. We have left room for probabilistic reasoning as well as utilities with 

regard to planning and plan recognition. Likewise, the belief operator takes a probability argument, and reasoning 

could in principle take advantage of it.  However, Eva often has to deal with embedded beliefs and goals.  It is still an 

open question how probabilistic reasoning would incorporate those embedded operators.  Still, we believe the basic 

structure of this system can function quite well until researchers have further developed probabilistic multi-agent 

reasoning for dialogue, which would then require a massive data collection effort in order to incorporate reasonable 

probabilities. Our contribution here is to situate the problems and initial approaches in the context of a useful 

cooperative dialogue system.  Other examples of algorithms incorporated here that could use improvement are the 

modal logic reasoner (e.g., to deal better with equality, negation, defaults, uncertainty, and causality), semantic parsing 

of natural language that incorporates anaphoric expressions, failed presuppositions, multi-utterance speech acts, multi-

act utterances, time and tense, etc.  Likewise, the language generation component can be greatly improved to deal with 

a variety of syntactic constructions: grounding (cf. [54, 137]), and confirmations [4, 138], generation of anaphoric 

expressions [139], and of discourse markers.  Most importantly, a tool needs to be created that enables developers to 

provide domain actions and business processes that will drive the planning and reasoning. Overall, our purpose here 

is to put all the pieces together in a fashion that enables researchers to see where their specialty fits in the larger 

scheme.     

14 Concluding Remarks 

The Eva dialogue system engages its users in cooperative planning-based task-oriented dialogues by inferring the 

user’s plans, and planning to facilitate them.  It formalizes the planning-based approach to speech acts [8–10, 13, 52] 

with the analysis of intention and speech acts in [1, 7].  It adapts that approach with principles derived from existing 

theories of collaboration [4, 6] in order to provide a principled analysis and reasoning process underlying 

conversational interaction. Whereas there have been many research works that have investigated aspects of this general 

approach to dialogue, none recently have been done within a declarative BDI reasoning and planning framework. It 

has been supposed by many that this approach is too computationally intensive to function as a real-time 

conversational agent. Eva is a counterexample to that supposition, as it engages in domain-dependent real-time mixed-

initiative collaborative dialogues, using multimodal inputs and outputs. The conversational capabilities include its 

planning of a variety of speech acts, context-dependence, constraint processing in response to slot-filling questions, 

mixed initiative, over-answering by system and user, multi-agent dialogue based on models of the mental states of 

more than one agent. The system’s conversational capabilities are domain independent as applied to domain dependent 

actions and knowledge. But, how should we or a system gather the knowledge needed to incorporate a new domain 
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(e.g., banking, automotive service)? We are so far agnostic on that issue – perhaps systems can read domain-specific 

documents providing the domain constraints (if such documents exist).  We are also investigating easy-to-use 

knowledge building tools to impart specific domain knowledge. Rules coupled with domain knowledge can be written 

at high levels of abstraction (such as what our BDI planner uses), covering many cases, which can overcome 

challenges faced by the dialogue community in learning all dialogue behavior from data. 

Unlike many current dialogue systems, we do not adopt an end-to-end trained approach to task-oriented dialogue 

because we believe it misses significant generalities and requires systems to relearn how to engage in dialogue for 

each domain.  Moreover, they typically will use pre-trained language models that have difficulty telling the truth, and 

that are so far incapable of explaining their responses in a way that is causally-connected to what it said. We advocate 

a domain-independent model of dialogue processing that is applied to domain-dependent knowledge.   One reason 

one might advocate for the end-to-end approach is to argue that it copes with the variability so often found in dialogue.  

However, we believe there is much more variability in the natural language processing per se than there is in the 

dialogue processing, so that training of the natural language engines (as we do) can proceed independently of building 

the dialogue processing engine.   

Moreover, on the topic of language models, numerous assertions in the literature tout the emergence of reasoning 

capabilities in pretrained Large Language Models (LLMs), which are large neural network models built upon the 

Transformer architecture that leverage the power of extensive training data [140, 141]. However, recent work has cast 

doubt on the capacity of LLMs to effectively engage in planning (e.g., [142]), even in classical planning settings with 

deterministic actions and full observability.  In contrast, our system operates in much richer settings involving multiple 

agents and partial observability where planning must take into consideration agents’ beliefs, goals, and intentions. In 

addition to the seeming failures of LLMs in relatively simple planning settings, and despite claims that Theory of 

Mind capabilities have emerged in LLMs [143, 144], recent work has demonstrated how these reasoning skills falter 

in the face of even minor modifications to Theory of Mind tasks (e.g., [145, 146]). Thus, as stated earlier, these models, 

in their current form, cannot be entrusted with carrying out the kind of collaborative dialogue envisioned in this paper 

in an end-to-end fashion.  

However, in addition to documenting the failures of LLMs, recent research has also endeavoured to create neuro-

symbolic systems that synthesize the powerful pattern matching capabilities of LLMs with the provably correct 

reasoning capabilities and inherent interpretability and explainability of symbolic AI techniques (e.g., [147–150]). 

Our neuro-symbolic system combines a BDI-based collaborative dialogue system with neural network-based natural 

language understanding and (in ongoing work) generation techniques. The aforementioned enhancement of planning 

via LLMs offers a potential path forward for further neuro-symbolic integration within our system. To this end, we 

are currently investigating various instantiations of such integration with LLMs within the planning and dialogue 

components of our system. 

Lastly, there is always a request among academics for competitive evaluation. We believe such evaluation is premature 

here as the purpose of this paper is to show that a more declarative specification of a collaborative plan-based BDI 

dialogue management engine can drive a complete task-oriented dialogue system in real-time.   On the other hand, 

there have been challenges from the symbolic AI community to the effect that 1) the logic of intention with which we 

defined speech acts [1, 7] was too complex to be functional and useful, and 2) that anything “logical” is fruitless 

(except for writing academic papers). We propose this paper and system as a kind of existence proof in having built a 

dialogue system based on a well-understood analysis of intention that: knows what it is doing, can explain its behavior, 

and plans to communicate its “mental” state (along with performing domain tasks, of course) in order to influence 

those of its users.  

14.1 Ethical Considerations 

Finally, in the not-so-distant future, with better analyses of the system’s and users’ mental states, such dialogue 

systems will need to be handled with care. Unscrupulous system developers could build competent but nefarious 

dialogue agents that could plan to take advantage of unsuspecting people, maximizing their developers’ utility. With 

deep fake technology and detailed user models, they could be instruments of crime and social unrest. The first steps 

in dealing with this issue is for a system to be able to decide whether it trusts a given user, and if not, to refrain from 

concluding that the user wants the typical utterance effect to hold (cf. [29]). Rather it could infer something weaker, 

e.g., that the system believes the user wants the system to think the effect holds [7, 22]. From there, the system could 

continue the dialogue, but not perform requested actions, could send out appropriate warnings, terminate the 
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conversation, etc. [151, 152]. In general, the AI community will need to incorporate technologies into defensive 

dialogue systems whose purpose is to shield users and corporations from those who would do them harm.  
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Appendix A:  Semantics for the Logic 

Taken from Cohen and Levesque [1]. 

A.1 Syntax 

The syntax of the logical language follows.  Semantics for the logical language can be found in Section A.2. 

<Action-var> ::=A, B, a1, a2. . . . . b1, b2. . . . . e, e1, e2. . . . . 
<Agent-var> ::= x, y, x1, x2. . . . . y1, y2. . . . . 
<Regular-var> ::= i, j, i1, i2 . . . . . j1,j2. . . . . 
<Variable> :: = <Agent-var> | <Action-var> | < Regular-var> 

<functor> : an atomic function symbol 

<Pred-symbol>: an atomic predicate symbol 

<Time-term> ::= <date(Mo, Day,Year)> 

<Term> ::= <functor>(Arg1, Arg2, … Argn)> | <Time-term> | <Variable> 

<Pred >:: = <Pred-symbol> (<Variable>1. . . . . <Variable>n), a Boolean predicate. 

<Wff> ::= < Pred>  | ~<Wff > | <Wff> ∨ <Wff >| ꓱ <variable > <Wff>  |  impossible(<Wff>), <Term> = <Term>, a 
well-formed (Boolean) formula. 

<Act_expr> ::=  <Action-var> 

| <action_name>([agent:Agent#agent, … Role:Var#Type]) 

| seq(<Act_expr>1 ; <Act_expr>2): sequential action62 

| disj(<Act_expr>1 | <Act_expr>2):  nondeterministic mutually-exclusive disjunctive action  

| condit(< Wff >, <Act_expr>): conditional action 

<Action-expression> :: = action(agent:Agent#agent, act:<Act_expr>, constraint:<Wff>) 

Linear time operators: 

◊<Wff>:     <Wff>  “Eventually” —<Wff> is true at some time in the future. 

□<Wff>  =def ~◊~<Wff>     “Always” — <Wff>  is true in all future states of the world.  

before(<Wff1>,  <Wff2>) :  at any time,  if <Wff2> is true, then <Wff1> was true before then. 

do([<Action-expression>, location:Loc#location, time:Time#time]):  <Action-expression> will be done at location 
Loc and time Time in the future.63   

done([<Action-expression>, location:Loc#location, time:Time#time]): <Action-expression> has been done at 
location Loc and a past time Time.  

 

62 Extension to lists of sequential or disjunctive actions is straightforward.   

63 Note that do is actually redundant given ◊ and done. 
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doing([<Action-expression>, location:Loc#location, time:Time#time]):  <Action-expression> is ongoing at location 
Loc and time Time. 

A.2  Model-Theoretic Semantics   

A precise model theory and semantics for the logical language can be found in Cohen and Levesque [1], section 3.2.  

Informally, we quote from that paper (p. 224): 

We shall adapt the usual possible-worlds model for belief to deal with goals. Assume there is a set 

of possible worlds T, each one consisting of a sequence (or course) or events, temporally extended 

infinitely in past and future. Each possible world characterizes possible ways the world could have 

been, and could be. Thus, each world specifies what happens in the future. Agents usually do not 

know precisely which world they are in. Instead, some of the worlds in T are consistent with the 

agent’s beliefs, and some with her goals, where the consistency is specified in the usual way, by 

means of an accessibility relation on tuples of worlds, agents, and an index, n, into the course of 

events defining the world (from which one can compute a time point, if need be). To consider what 

an agent believes (or has as a goal), one needs to supply a world and an index into the course of 

events defining that world. As the world evolves, agents' beliefs and goals change. When an agent 

does an action in some world, he does not bring about a new world, though he can alter the facts of 

that world at that time. Instead, after an event has happened, we shall say the world is in a new 

"state" in which new facts hold and the set of accessible worlds has been altered. That is, the agent 

changes the way he thinks the world could be and / or chooses the world to be.64   

The point of having a formal semantics is that it gives meaning to and constrains the statements that the system 

manipulates. For example, as compared with so-called “slot-filling” systems, we now can say precisely what a slot is 

and how slot-filling questions and answers can be provided. As we have shown, the system plans questions when it is 

reasoning about what it needs to know. See Section 6.1 for more details. 

3.2.1. Model theory 

A model M is a structure <Θ, P, E, Agt, T, B, G, Φ>, where Θ is a set, P is a set of people, E is a set of primitive event 

types, Agt ϵ[E→P] specifies the agent of an event, T ⊆ [ℤ → E] is a set of possible courses of events (or worlds) 

specified as a function from integers to elements of E, B ⊆T x P x ℤ x T is the belief accessibility relation, G ⊆T x P 

x ℤ x T is the goal accessibility relation, and Φ interprets predicates. Formulas will be evaluated with respect to some 

possible course of events, hereafter some possible world, and an “index” into that possible world, that is, at a particular 

point in the course of events.  

3.2.2. Definitions 

 (1) Φ = Θ ∪ P ∪ E*, specifying the domain of quantification. That is, one can quantify over things, people, and 

sequences of (types of) primitive events. Given this, Φ ⊆ [Predk x T x ℤ x Dk]. 

(2) AGT⊆ E* x P, where x ϵ AGT[e1 . . . . . en,] iff there is an i, such that x = Agt(ei). That is, AGT specifies the partial 

set of agents of a sequence of events. 

3.2.3. Satisfaction (Cohen and Levesque [1], p. 225) 

Assume M is a model, σ is a sequence of events, n, an integer, v, a set of bindings of variables to objects in the domain 

of quantification D, and if v ϵ [Vars→ D], then v(X,d) is that function which yields d for and is the same as v everywhere 

else. We now specify what it means for M,σ,v,n to satisfy a wff α, which we write as M,σ,v,n |= α. Because of formulas 

involving actions, this definition depends on what it means for an expression a to occur between index points n and 

m. This, we write as M,σ,v,n[[a]]m, and is itself defined in terms of satisfaction. The definitions are as follows: 

 

64 Many researchers (e.g., [63]) have suggested using a branching time model rather than the linear time one adopted here. For the 

purposes of building a dialogue system, these differences are of minor importance. 
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(1) M,σ,v,n |=  P(x1. . . . . xk) iff <v(x1) . . . v(xk)> ϵ ϕ[P, σ, n]. Notice that the interpretation of predicates depends 

on the world σ and the event index n. 

(2) M,σ,v,n |=  ~ α  iff M,σ,v,n does not satisfy α. 

(3) M,σ,v,n |=  α V β iff M,σ,v,n  |= α  or M,σ,v,n |= β. 

(4) M,σ,v,n |=  ꓱx α iff M,σ,v(x,d),n |= α for some d in D. 

(5) M,σ,v,n |=  (x1 = x2) iff v(x1) = v(x2). 

(6) M,σ,v,n |=  <Time-proposition> iff v (<Time-proposition>) = n. 

(7)  M,σ,v,n |=  impossible(α) iff  □~ α 

The interested reader should refer to Cohen and Levesque [1], section 3.2.3]. 

Next, we provide a semantics for statements about beliefs and goals.  

(1) M,σ,v,n |= bel(x, α) iff for all σ* such that < σ,n>B[v(x)] σ*, M,σ*,v,n |= α. That is, α follows from the agent’s 

beliefs iff α is true in all possible worlds accessible via B, at index n. 

(2) M,σ,v,n |= goal(X, α) iff for all σ* such that < σ,n>G [v(x)] σ*, M,σ*,v,n |= α. That is, α follows from the agent’s 

goals iff α is true in all possible worlds accessible via G, at index n. 

We can now see how formulas for quantifying into bel and goal are interpreted. 

M,σ,v,n |= ꓱx bel(a, p(x)) iff M,σ,v(x,d),n |= ꓱx bel(a, p(x)) for some d in D, such that for all σ* where <σ,n>B[v(x)] 

σ*,  M,σ*,v,n |=  p(d).  

In other words, the quantified belief formula is satisfied in some world at some time if there is a value d from the 

domain D picked out by the valuation function, such that for all B-related worlds, the formula p(d) is true of that value. 

The value d has to be the same in all of those worlds. Likewise, the same general satisfaction procedure applies to 

quantifying into goal formulas – for ꓱx goal(a, p(x)) there is some value d for which in all G-related worlds, p(d) is 

satisfied. Notice that this can continue along chains of B and G related worlds. Thus, the semantics provides a meaning 

for ꓱx bel(a, goal(a, p(x)) -- the valuation function picks out an element of the domain D, which is true in all B-related 

worlds, and then in all the G-related worlds to those such that p(d) is satisfied in those worlds. So, in our terminology, 

the agent knows what the value for x s/he wants p to be true of.  Notice also that the agents could be different. See 

Figure 7. 

A.3 Constraints on the model 

Formulas are evaluated in worlds and at times. Belief and goal worlds are related to one another as defined by two 

relations, B and G, respectively. Seriality means that the relations are (separately) consistent, with there always being 

a consistent world that is B-related or G-related, to a given world. The B relation is Euclidean, transitive, and serial, 

while the G relation is serial. Essentially, that means the B-related worlds that the agent thinks are possible form an 

equivalence relation, though those worlds may not include the real world.   

In Cohen and Levesque [1], we adopted the “Realism” constraint such that the G worlds are a subset of the B worlds.  

In other worlds, the agent chooses among worlds that are among the agent’s B-related worlds. Thus, the agent cannot 

choose what it believes to be impossible. 

This possible-worlds diagram shows the current world W0, which is belief-accessible for agent A to worlds W1, W2, 

and W3.  In each of these predicate p is true of element d.   Worlds W4-W8 are G (goal)-related for agent C. In each 

of these, p is true of element e.  Thus, agent A believes p(d), agent C has a goal that p(e), and ꓱX bel(A, goal(C, p(X)) 

is satisfiable.    
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Appendix B:  Detailed Dialogue Example 

We now return to the example65 given in the introduction, for which we need two additional action definitions to 

describe the making and rescheduling of an appointment at a business. This time, we include the applicability 

condition.  

make_appointment(Agent, Patron, Business, Date, Time) 

constraint: Cond, 

precondition: true, 

effect: have(Patron, appointment(Business, Date,  Time)) 

applic_cond: available(appointment(Business, Date, Time)) 

In other words, the intended effect of an Agent’s making an appointment for a Patron at a Business at some Date and 

Time, is that the Patron has an appointment. The applicability condition for this action is that an appointment at that 

date and time must be available. For the moment, we will avoid constraints, and say the precondition is always true. 

reschedule_appointment(Agent, Patron, Business, OldDate, OldTime, NewDate, NewTime) 

constraint: Cond,  

precondition: true, 

effect: and(neg(have(Patron, appointment(Business, OldDate,  OldTime))),   

have(Patron, appointment(Business, NewDate, NewTime))) 

applic_cond: and(available(appointment(Business, NewDate, NewTime)), 

have(Patron, appointment(Business, OldDate, OldTime))) 

The intended effect of an Agent’s rescheduling of an appointment for a Patron at a Business from some OldDate and 

OldTime to NewDate and NewTime, is that the patron has an appointment at the new date and time and no longer has 

an appointment at the old date and time. The applicability condition for this action is that the patron already has an 

appointment at the old date and time and that an appointment at the new date and time must be available. 

For the example that follows, we provide the dialogue, an English gloss of the logical representations that the system 

is manipulating, and a graphical representation of the system’s reasoning in the plan display (for clarity and economy 

of space, we only include the most relevant plan elements at each step). Whereas the reasoning employs the logical 

formulas shown above, the system provides a “clunky” paraphrase of them in the plan display, enabling us to know 

how it is reasoning. Green indicates acts that have been done, shades of blue signify pgoals, shades of magenta 

signify intentions, and straw indicates beliefs. The numbers before each plan element show the order in which they 

were created. The system operates primarily in a breadth-first fashion, but deepening via action decomposition. Black 

arrows indicate dependence of the node at the arrowhead on the node at the tail.  Red dashed lines indicate a blockage 

and plum-colored edges indicate achievement relations.  

  

 

65 See also https://openstream.ai/hubfs/supp_mat_full_dialogue_graph.pdf for the complete plan graph representing Eva’s 

reasoning throughout this example. 

https://openstream.ai/hubfs/supp_mat_full_dialogue_graph.pdf
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Utterance 

System reasoning Plan Elements 

U:  Are there any covid vaccination centers nearby 

While this is interpreted as an existential Y/N 

question (pgoal #8), the system’s plan 

recognition component infers that the user 

asked this question possibly because they want 

to know the location of a nearby vaccination 

center. Furthermore, the reason why they 

might want to know this location is likely 

because they intend to go there. 

 

S:  Yes, the CVS Covid vaccination center is located at 130 Main St and this location is 6 miles away from you 

via the following route: turn right, go straight, then turn left. 

Given its inference about the user’s likely plan 

(specifically, pgoal #10), the system over-

answers the Y/N question.  It tells the user the 

route because it believes the user needs to 

know that. (In a multimodal implementation, 

the route might not need to be verbalized 

explicitly, but could simply be a hyperlink to a 

navigation app to display the route). 

 

S:  Would you like to be vaccinated at a Covid vaccination center? 
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The system’s plan recognition component 

further infers that the reason one might want to 

go to a Covid vaccination center (intention 

#12) is to do what one typically does at such a 

place, namely to get vaccinated. However, the 

system doesn’t have high confidence that its 

inference about the user’s plan is accurate, so 

it plans to ask the user to confirm (or reject) its 

hypothesis. Until the system can confirm (or 

reject) its hypothesis, the user’s intention to 

get vaccinated (represented in node 31) is 

blocked on the system’s goal to know whether 

the user wants to get vaccinated (the blockage 

is represented by the red dashed line between 

nodes 31 and 28) 

Note that the system knows that, in order to get 

vaccinated, one needs to set up an appointment 

(based on action preconditions). 

 

U:  Yes 

 

 

S  to CVS: Do you have covid vaccine available? 

S does not know if vaccine is available there, 

but believes that the vaccine center knows 

whether it is available. So, S plans and 

executes a Y/N question to CVS about 

availability (we’re assuming here that this 

information is not obtained via an API, so the 

system uses a language channel available to 

any customer, such as calling the center’s 

phone line, or interacting with a chatbot on the 

center’s website). 

 

CVS to S: Yes 

S to U: OK, I believe that the CVS covid vaccination center has Covid vaccine. 
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S comes to believe that the CVS vaccine center 

has vaccine and judges U ought to know this, 

as well, since this eliminates one potential 

hurdle in U’s plan to get vaccinated. 

 

S:  How old are you? 

Another requirement (precondition) for the 

user to be able to get vaccinated is that the user 

is eligible for the Covid vaccine. There are 

several conditions U may satisfy to be deemed 

eligible, and the system had already made a 

plan for checking U’s eligibility. Some of the 

constraints require it to know U’s age.  

 

U:  why do you ask? 

S: The reason is that I need to determine whether you are eligible for the vaccine. 

The previous system question may appear 

surprising to U, so they ask for an explanation. 

The system accesses the plan to determine a 

reasonable pgoal in the chain of reasoning 

leading to the intention (#109) to ask U about 

their age. Pgoal #63 is picked as the best 

explanation. 

 

S: Sorry to repeat myself… How old are you? 
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The system maintains its goal to achieve 

knowing how old the user is, causing it to 

repeat its question. 

 

U:  45 years old 

 

 

S:  What is your occupation? 

The specific eligibility rule says that a person 

is eligible for the Covid vaccine if they are 

under 50 years old and are an essential worker.  

 

U:  why? 

S: The reason is that I need to determine if you are an essential worker. 

S: Sorry, to, ask you again, but what is your occupation? 

The rationale for each system action has to be 

sufficiently specific, but not trivial. In this case 

pgoal #189 is found to provide a good 

explanation. As above, system repeats the 

question, trying again to achieve the goal of 

knowing U’s occupation.  

The chain of pgoals and intentions is similar to 

the previous case. Here we highlight the 

beliefs the system forms about U’s own beliefs 

as a result of the speech acts performed by U 

and the system itself. 

 

U: Teacher 

S: You are eligible for the covid vaccine and appointments are available at CVS on June 26 at 9am. 
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The system’s goal of knowing whether U is 

eligible and CVS having appointments is now 

satisfied. For this eventuality S had already 

planned to confirm this fact to U (similarly, it 

had planned to tell the user if this turned out 

not to be true); now it can perform this 

confirmation. 

 

S: Would you like me to make an appointment for you at CVS?  

In order to be vaccinated, the user needs an 

appointment, which is accomplished by 

making an appointment provided the user is 

eligible. Since the user is eligible, the 

conditional intention becomes unconditional 

and the system offers to make an appointment 

for the user. 

 

U:  Yes, please 

S: What time would you like me to make an appointment at a covid vaccination center for you? 
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Now that U confirmed that they want the 

system to make an appointment for them at 

CVS (relevant portions of the plan graph 

omitted to save space), the system is starting to 

pursue this goal. The (sub-)plan for setting up 

an appointment requires that it knows the date 

and the time of the appointment. This “slot-

filling” is performed by reasoning about 

knowledge. Note that the system has generated 

multiple goals at the same time for the various 

values that it needs. This is useful for the 

ability to handle the situation when the user 

over-answers a question. 

 

U:  Monday the earliest time available 

The user over-answers, providing a date. 

However, for the time of the appointment, the 

user provides a constraint, which does NOT 

fill the slot. Hence the system keeps its pgoal 

to know the time, but updated with the new 

information about the date (#369). 

 

S:  The earliest time available is 8 am.  

S:  Would you like me to make an appointment for you at CVS on June 26 2023 at 8am? 
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Because the user didn't provide a specific time, 

the system plans to propose one that matches 

the user's constraints. It finds the earliest 

appointment available on the date requested 

(in this case 8am), and plans a sequence of two 

speech acts: (i) to tell U that that satisfies the 

given constraint, and then (ii) to request that U 

confirm that that is, indeed, the time they want 

the appointment to be made for. 

 

U: sure 

S: Ok I made an appointment for you at CVS on June 26 2023 at 8am. 

User accepts; hence system adopts the U’s 

goal to make the appointment on Monday at 

8am. It creates the intention to do so, and then 

to tell the user that the appointment was made. 

 

S: Is there anything else I can help you with? 

At this point the system has no more actions 

ready to execute, so it checks if the user has 

any additional goals. 

 

U: yes, i actually cannot make it on monday at 8 

S: Would you like me to reschedule your appointment at CVS that is currently scheduled on June 26 2023 at 8? 
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System interprets U’s utterance to mean they 

don’t want the previously made appointment 

anymore.  This triggers an intention revision 

process: if U still wants to get vaccinated, they 

would need another appointment, provided 

any are available. Therefore, system asks U if 

they would like to reschedule.  

 

U: yes 

S: What date would you like me to reschedule your appointment at CVS to? 

Since U expressed the desire to have the 

appointment rescheduled, system plans to 

obtain from U the date and time for the new 

appointment. 
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U: monday at 10 

User again over-answers, but this time 

provides values for both the date and the time 

“slots”. The system adopts the user’s goal to 

reschedule the appointment to the new date 

and time. 

 

S:  Ok, I’ve rescheduled your appointment at CVS to a new time on June 26 2023 at 10am. 

The action of rescheduling an appointment is 

hierarchically decomposed into a sequence of 

two (sub-) actions: first, canceling the old 

appointment, and second making the new 

appointment. The system executes each of the 

sub-actions and informs the user that the 

appointment was rescheduled, and the system 

updates its beliefs about U’s beliefs. 
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S: Can I help you with anything else? 

U: No, thanks! 

S: Glad to be of service. Goodbye! 

Having again exhausted all the actions ready 

to be executed, system asks U if they have 

additional goals. Since the user responds in the 

negative, the system closes the conversation. 

 

 

 


